
Distributed Parameter Learning for
Probabilistic Ontologies

Giuseppe Cota1, Riccardo Zese1, Elena Bellodi1, Fabrizio Riguzzi2, and
Evelina Lamma1

1 Dipartimento di Ingegneria – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

2 Dipartimento di Matematica e Informatica – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

[giuseppe.cota,riccardo.zese,elena.bellodi,evelina.lamma,

fabrizio.riguzzi]@unife.it

Abstract. Representing uncertainty in Description Logics has recently
received an increasing attention because of its potential to model real
world domains. EDGE for “Em over bDds for description loGics param-
Eter learning” is an algorithm for learning the parameters of probabilistic
ontologies from data. However, the computational cost of this algorithm
is high since it often takes hours to complete an execution. In this pa-
per we present EDGEMR, a distributed version of EDGE that exploits
the MapReduce strategy by means of the Message Passing Interface. Ex-
periments on various domains show that EDGEMR significantly reduces
EDGE running time.

Keywords: Probabilistic Description Logics, Parameter Learning, MapReduce,
Message Passing Interface.

1 Introduction

Representing uncertain information is becoming crucial to model real world do-
mains. The ability to describe and reason with probabilistic knowledge bases is
a well-known topic in the field of Description Logics (DLs). In order to model
domains with complex and uncertain relationships, several approaches have been
proposed that combine logic and probability theories. The distribution seman-
tics [14] is one of them, applied in the field of Logic Programming.

In [2, 13, 8] the authors proposed an approach for the integration of proba-
bilistic information in DLs called DISPONTE (for “DIstribution Semantics for
Probabilistic ONTologiEs”), which adapts the distribution semantics for proba-
bilistic logic programming to DLs.

EDGE [10], for “Em over bDds for description loGics paramEter learning”,
is an algorithm for learning the parameters of probabilistic DLs following the
DISPONTE semantics. EDGE was tested on various datasets and was able to
find good solutions. However, the execution of this algorithm becomes rather

expensive from a computational point of view, taking a few hours on datasets
of the order of MBs. In order to efficiently manage larger datasets in the era
of Big Data, it is of foremost importance to develop approaches for reducing
the learning time. One solution is to distribute the algorithm using modern
computing infrastructures such as clusters and clouds.

In order to reduce EDGE running time, we developed EDGEMR, which rep-
resents a MapReduce implementation of EDGE.

MapReduce [5] is a model for processing data with a parallel algorithm on
a cluster. In this model the work is distributed among mapper and reducer
workers. The mappers take the data and return a set of (key, value) pairs. These
sets are then grouped according to the key and the reducers aggregate the values
obtaining a set of (key’, aggregated value) couples that represents the output of
the task.

Various MapReduce frameworks are available, such as Hadoop. However we
chose not to use any framework and to implement a much simpler MapReduce
approach for EDGEMR based on the Message Passing Interface (MPI). The
reason is that the map and reduce functions for EDGE were relatively easy to
implement with MPI and we wanted the overhead to be as small as possible.

A performance evaluation of EDGEMR is provided through a set of experi-
ments on various datasets using 1, 3, 5, 9 and 17 computing nodes. The results
reveal that EDGEMR effectively reduces EDGE running time. Nevertheless, due
to the overhead of the communication tasks, the reached speedup is less than
linear.

The paper is structured as follows. Section 2 introduces Description Log-
ics while Section 3 summarises the DISPONTE semantics and an inference
system for probabilistic DLs. Section 4 briefly describes EDGE. In Section 5
EDGEMR is presented. Section 6 shows the results of the experiments for eval-
uating EDGEMR. Finally, Section 7 draws conclusions.

2 Description Logics

DLs are a family of logic based knowledge representation formalisms which are
of particular interest for representing ontologies in the Semantic Web. For a good
introduction to DLs we refer to [1].

While DLs are a fragment of first order logic, they are usually represented
using a syntax based on concepts and roles. A concept corresponds to a set
of individuals of the domain while a role corresponds to a set of couples of
individuals of the domain. For the sake of simplicity we consider and describe
ALC, but the proposed algorithm can work with SROIQ(D) DLs as well.

We use A, R and I to indicate atomic concepts, atomic roles and individuals,
respectively. A role is an atomic role R ∈ R. Each A ∈ A, ⊥ and > are concepts.
If C, C1 and C2 are concepts and R ∈ R, then (C1 u C2), (C1 t C2) and ¬C
are concepts, as well as ∃R.C and ∀R.C. Let C and D be concepts, R be a role
and a and b be individuals, a TBox T is a finite set of concept inclusion axioms
C v D, while an ABox A is a finite set of concept membership axioms a : C and

2

role membership axioms (a, b) : R. A knowledge base (KB) K = (T ,A) consists
of a TBox T and an ABox A.

A KB is usually assigned a semantics using interpretations of the form I =
(∆I , ·I), where ∆I is a non-empty domain and ·I is the interpretation function
that assigns an element in ∆I to each individual a, a subset of ∆I to each
concept C and a subset of ∆I ×∆I to each role R. The mapping ·I is extended
to all concepts as:

>I = ∆I

(¬C)I = ∆I \ CI

(C1 t C2)I = CI
1 ∪ CI

2

(∃R.C)I = {x ∈ ∆I |RI(x) ∩ CI 6= ∅}

⊥I = ∅
(C1 u C2)I = CI

1 ∩ CI
2

(∀R.C)I = {x ∈ ∆I |RI(x) ⊆ CI}

A query over a KB is an axiom for which we want to test the entailment from
the KB.

3 Semantics and Reasoning in Probabilistic DLs

DISPONTE [2] applies the distribution semantics to probabilistic ontologies [14].
In DISPONTE a probabilistic knowledge base K is a set of certain and proba-
bilistic axioms. Certain axioms are regular DL axioms. Probabilistic axioms take
the form p :: E, where p is a real number in [0, 1] and E is a DL axiom.

The idea of DISPONTE is to associate independent Boolean random vari-
ables to the probabilistic axioms. By assigning values to every random variable
we obtain a world, i.e. the union of the set of probabilistic axioms whose random
variables take on value 1 and the set of certain axioms.

The probability p can be interpreted as an epistemic probability, i.e., as the
degree of our belief in axiom E. For example, a probabilistic concept membership
axiom p :: a : C means that we have degree of belief p in C(a). The statement
that Tweety flies with probability 0.9 can be expressed as 0.9 :: tweety : Flies.

Let us now give the formal definition of DISPONTE. An atomic choice is a
pair (Ei, k) where Ei is the ith probabilistic axiom and k ∈ {0, 1}. k indicates
whether Ei is chosen to be included in a world (k = 1) or not (k = 0). A composite
choice κ is a consistent set of atomic choices, i.e., (Ei, k) ∈ κ, (Ei,m) ∈ κ ⇒
k = m (only one decision for each formula). The probability of a composite
choice κ is P (κ) =

∏
(Ei,1)∈κ pi

∏
(Ei,0)∈κ(1 − pi), where pi is the probability

associated with axiom Ei. A selection σ is a composite choice that contains an
atomic choice (Ei, k) for every probabilistic axiom of the theory. A selection σ
identifies a theory wσ called a world in this way: wσ = {Ei|(Ei, 1) ∈ σ}. Let
us indicate with SK the set of all selections and with WK the set of all worlds.
The probability of a world wσ is P (wσ) = P (σ) =

∏
(Ei,1)∈σ pi

∏
(Ei,0)∈σ(1−pi).

P (wσ) is a probability distribution over worlds, i.e.
∑
w∈WK

P (w) = 1. We can
now assign probabilities to queries. Given a world w, the probability of a query
Q is defined as P (Q|w) = 1 if w |= Q and 0 otherwise. The probability of a
query can be defined by marginalizing the joint probability of the query and the

3

worlds:

P (Q) =
∑

w∈WK

P (Q,w) =
∑

w∈WK

P (Q|w)P (w) =
∑

w∈WK:w|=Q

P (w) (1)

The system BUNDLE [13, 9, 11] computes the probability of a query w.r.t.
KBs that follow the DISPONTE semantics by first computing all the explana-
tions for the query and then building a Binary Decision Diagram (BDD) that
represents them. A set of explanations K for a query Q is a set of compos-
ite choices that identify a set of sets of worlds which entail Q. We can de-
fine the Disjunctive Normal Form (DNF) Boolean formula fK as fK(X) =∨
κ∈K

∧
(Ei,1)

Xi

∧
(Ei,0)

Xi. The variables X = {Xi|(Ei, k) ∈ κ, κ ∈ K} are

independent Boolean random variables and the probability that fK(X) takes
on value 1 is equal to the probability of Q. A BDD for a function of Boolean
variables is a rooted graph that has one level for each Boolean variable. A node n
has two children: one corresponding to the 1 value of the variable associated with
the level of n, indicated with child1(n), and one corresponding to the 0 value of
the variable, indicated with child0(n). When drawing BDDs, the 0-branch - the
one going to child0(n) - is distinguished from the 1-branch by drawing it with a
dashed line. The leaves store either 0 or 1.

Explanations are found by means of the Pellet reasoner [15] and are then
translated into a BDD that allows to compute the probability of Q with a dy-
namic programming algorithm in polynomial time in the size of the diagram [4].

Example 1. Let us consider the following knowledge base, inspired by the ontol-
ogy people+pets proposed in [7]:

∃hasAnimal.Pet v NatureLover
(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

(E1) 0.4 :: fluffy : Cat

(E2) 0.3 :: tom : Cat

(E3) 0.6 :: Cat v Pet

Individuals that own an animal which is a pet are nature lovers and kevin owns
the animals fluffy and tom. fluffy and tom are cats and cats are pets with the
specified probability. This KB has eight worlds and the query axiom Q = kevin :
NatureLover is true in three of them, corresponding to the following choices:
{(E1, 1), (E2, 0), (E3, 1)}, {(E1, 0), (E2, 1), (E3, 1)}, {(E1, 1), (E2, 1), (E3, 1)}. The
probability is P (Q) = 0.4 · 0.7 · 0.6 + 0.6 · 0.3 · 0.6 + 0.4 · 0.3 · 0.6 = 0.348. If we
associate the random variables X1 with the axiom E1, X2 with E2 and X3 with
E3, the BDD representing the set of explanations is shown in Figure 1.

4 Parameter Learning for Probabilistic DLs

EDGE [10] adapts the algorithm EMBLEM [3], developed for learning the pa-
rameters for probabilistic logic programs, to the case of probabilistic DLs un-

4

X1
�� ���� ��n1 K

:

X2
�� ���� ��n2

�
�
�

X3
�� ���� ��n3 \ V

O
1 0

Fig. 1. BDD representing the set of explanations for the query of Example 1.

der the DISPONTE semantics. Inspired by [6], it performs an Expectation-
Maximization cycle over Binary Decision Diagrams (BDDs).

EDGE performs supervised parameter learning. It takes as input a DL KB
and a number of positive and negative examples that represent the queries in
the form of concept assertions, i.e., in the form a : C for an individual a and a
class C. Positive examples represent information that we regard as true and for
which we would like to get high probability while negative examples represent
information that we regard as false and for which we would like to get low
probability.

First, EDGE generates, for each query, the BDD encoding its explanations
using BUNDLE. Then, EDGE starts the EM cycle in which the steps of Expec-
tation and Maximization are iterated until a local maximum of the log-likelihood
(LL) of the examples is reached. The LL of the examples is guaranteed to in-
crease at each iteration. EDGE stops when the difference between the LL of the
current iteration and that of the previous one drops below a threshold ε or when
this difference is below a fraction δ of the previous LL. Finally, EDGE returns
the reached LL and the probabilities pi of the probabilistic axioms. EDGE’s
main procedure is illustrated in Alg. 1.

Algorithm 1 Function EDGE
function EDGE(K, PE , NE , ε, δ) . PE , NE : positive and negative examples

Build BDDs . performed by BUNDLE
LL = −∞
repeat

LL0 = LL
LL = Expectation(BDDs)
Maximization

until LL− LL0 < ε ∨ LL− LL0 < −LL0 · δ
return LL, pi for all probabilistic axioms

end function

Function Expectation (shown in Algorithm 2) takes as input a list of BDDs,
one for each example Q, and computes the expectations E[ci0|Q] and E[ci1|Q]
for all axioms Ei directly over the BDDs. cix represents the number of times
a Boolean random variable Xi takes on value x for x ∈ {0, 1} and E[cix|Q] =
P (Xi = x|Q). Then it sums up the contributions of all examples: E[cix] =∑
QE[cix|Q].

5

Algorithm 2 Function Expectation
function Expectation(BDDs)

LL = 0
for all i ∈ Axioms do

E[ci0] = E[ci1] = 0
end for
for all BDD ∈ BDDs do

for all i ∈ Axioms do
η0(i) = η1(i) = 0

end for
for all variables X do

ς(X) = 0
end for
GetForward(root(BDD))
Prob=GetBackward(root(BDD))
T = 0
for l = 1 to levels(BDD) do

Let Xi be the variable associated with level l
T = T + ς(Xi)
η0(i) = η0(i) + T · (1− pi)
η1(i) = η1(i) + T · pi

end for
for all i ∈ Axioms do

E[ci0] = E[ci0] + η0(i)/Prob
E[ci1] = E[ci1] + η1(i)/Prob

end for
LL = LL+ log(Prob)

end for
return LL

end function

Finally, P (Xi = x|Q) is given by P (Xi=x,Q)
P (Q) . In this procedure we use ηx(i)

to indicate P (Xi = x,Q). Expectation first calls procedures GetForward
and GetBackward that compute the forward and the backward probability of
nodes and ηx(i) for non-deleted paths only. These are the paths that have not
been deleted when building the BDDs. Forward and backward probabilities in
each node represent the probability mass of paths from the root to the node and
that of the paths from the node to the leaves respectively. The expression

P (Xi = x,Q) =
∑

n∈N(Q),v(n)=Xi

F (n)B(childx(n))πix

with N(Q) the set of BDD nodes for query Q, v(n) the variable associated with
node n, πi1 = pi, πi0 = 1 − pi, F (n) the forward probability of n, B(n) the
backward probability of n, represents the probability mass of each path passing
through each node associated with Xi and going down its x-branch. We use the
notation ex(n) to indicate the expression inside the sum.

Computing the two types of probability in the nodes requires two traversals
of the graph, so its cost is linear in the number of nodes.

Procedure GetForward computes the value of the forward probabilities
for every node. It traverses the diagram one level at a time starting from the
root level, where F (root) = 1, and for each node n computes its contribution
to the forward probabilities of its children. Then the forward probabilities of
both children are updated. Function GetBackward computes the backward

6

probability of nodes by traversing recursively the tree from the leaves to the root.
It returns the backward probability of the root corresponding to the probability
of the query P (Q), indicated as Prob in Algorithm 2.

When the calls of GetBackward for both children of a node n return, we
compute the ex(n) and ηx(i) values for non-deleted paths. An array ς is used to
store the contributions of the deleted paths. See [10] for more details.

Expectations are updated for all axioms and finally the log-likelihood of the
current example is added to the overall LL.

Function Maximization computes the parameters’ values for the next EM
iteration by relative frequency.

EDGE is written in Java, hence it is highly portable. For further information
about EDGE please refer to [10].

5 Distributed Parameter Learning for Probabilistic DLs

The aim of the present work is to develop a parallel version of EDGE that
exploits the MapReduce method in order to compute the parameters. We called
it EDGEMR (see Algorithm 3).

5.1 Architecture

Like most MapReduce frameworks, EDGEMR architecture follows a master-slave
model. The communication between the master and the slaves is done by means
of the Message Passing Interface (MPI), specifically we use the OpenMPI3 library
which provides a Java interface to the native library. The processes of EDGEMR

are not purely functional, as required by standard MapReduce frameworks such
as Hadoop, because they have to retain in main memory all BDDs during all
iterations. This forced us to develop a parallelization strategy exploiting MPI.

EDGEMR can be split into three phases: initialization, Query resolution and
Expectation-Maximization. All these operations are executed in parallel and syn-
chronized by the master.

Initialization During this phase the data is replicated and a process is created
on each machine. Thereafter each process parses its copy of the probabilistic
knowledge base and stores it in main memory. The master, in addition, parses
the files containing the positive and negative examples (the queries).

Query resolution The master divides the set of queries into subsets and dis-
tributes them among the slaves. Each slave generates its private subset of
BDDs and keeps them in memory for the whole execution. Two different
scheduling techniques can be applied for this operation. See Subsec. 5.2 for
details.

Expectation-Maximization After all the nodes have built the BDDs for all
the queries, EDGEMR starts the Expectation-Maximization cycle. During
the Expectation step all the slaves traverse their BDDs and calculate their

3 http://www.open-mpi.org/

7

local set of ηx(i). Then the master gathers all the ηx(i) from the slaves
and aggregates them by summing the vectors component-wise. Then it calls
the Maximization procedure in which it estimates the parameters and sends
them to the slaves. The cycle is repeated until one of the stopping criteria is
reached.

Algorithm 3 Function EDGEMR

function EDGEMR (K, PE , NE , S, ε, δ) . PE , NE : pos. and neg. examples, S: scheduling method
Read knowledge base K
if MASTER then

Identify examples E
if S == dynamic then

Send an example ej to each slave
Start thread listener . This thread sends an example to the slave at every request
c = m− 1 . c counts the computed examples
while c < |E| do

c = c+ 1
Build BDDc for example ec . performed by BUNDLE

end while
else . single-step scheduling

Split examples E into n subsets E1, . . . , En

Send Em to each worker m, 2 ≤ m ≤ n
Build BDDs1 for examples E1

end if
LL = −∞
repeat

LL0 = LL
Send the parameters pi to each worker m, 2 ≤ m ≤ n
LL = Expectation(BDDs1)
Collect LLm and the expectations from each worker m, 2 ≤ m ≤ n
Update LL and the expectations
Maximization

until LL− LL0 < ε ∨ LL− LL0 < −LL · δ
Send STOP signal to all slaves
return LL, pi for all i

else . the j-th slave
if S == dynamic then

while c < |E| do
Receive ej from master
Build BDDj for example ej
Request another example to the master

end while
else . single-step scheduling

Receive Ej from master
Build BDDsj for examples Ej

end if
repeat

Receive the parameters pi from master
LLj = Expectation(BDDsj)
Send LLj and the expectations to master

until Receive STOP signal from master
end if

end function

5.2 Scheduling Techniques

In a distributed context the performances depend on the scheduling strategy. We
evaluated two scheduling strategies, single-step scheduling and dynamic schedul-

8

ing, during the generation of the BDDs for each query, while the initialization
and the EM phases are independent of the chosen scheduling method.

Master

Slave1 Slave2

q1 q2 q3 q4 q5 qn

Master

Slave1 Slave2

chunk1
q1 q2 q3 q4 q5 qn

chunk2 chunk3

Master

Slave1 Slave2

qnq4

q1 q2 q3

(a) Single-step scheduling

Master

Slave1 Slave2

q1 q2 q3 q4 q5 qn

Master

Slave1 Slave2

q1

q2 q3

q4 q5 qn

Master

Slave1 Slave2

q1

q3 q4q2

q5 qn

(b) Dynamic scheduling

Fig. 2. Scheduling techniques of EDGEMR.

Single-step Scheduling If N is the number of the slaves, the master divides
the total number of queries into N + 1 chunks, i.e. the number of slaves plus
the master. Then the master begins to compute its queries while, for each
other chunk of queries, the master starts a thread which takes care to send
a chunk to the corresponding slave. After the master has terminated dealing
with its queries, it waits for the results from the slaves. When the slowest
slave returns its results to the master, EDGEMR proceeds to the EM cycle.
Figure 2(a) shows an example of single-step scheduling with two slaves.

Dynamic Scheduling Is more flexible and adaptive than single-step schedul-
ing. Handling each query may require a different amount of time. Therefore
with single-step scheduling it could happen that a slave takes a lot more
time than another slave to deal with its chunk of queries. Hence the mas-
ter and some slaves could be idle. Dynamic scheduling mitigates this issue.
At first each machine is assigned a query in order. Then if the master ends
handling a query it just takes the next one, instead, if a slave ends handling
a query, it asks the master for a new query and the master sends the next
query to the slave. During this phase the master runs a thread listener that

9

waits for the slaves’ requests of new queries and for each request starts a new
thread that sends a query to the slave which has done the request. When
all the queries are evaluated, EDGEMR starts the EM cycle. An example of
dynamic scheduling with two slaves is displayed in Fig. 2(b).

6 Experiments

In order to evaluate the performances of EDGEMR, four datasets were selected:
Mutagenesis, Carcinogenesis, an extract of DBpedia and education.data.gov.

uk. The last three datasets are the same as in [12]. All experiments have been
performed on a cluster of 64-bit Linux machines with 2 GB (max) memory
allotted to Java per node. Each node of this cluster has 8-cores Intel Haswell
2.40 GHz CPUs.

For the generation of positive and negative examples, we randomly chose a
set of individuals from the dataset. Then, for each extracted individual a, we
sampled three named classes: A and B were selected among the named classes to
which a explicitly belongs, while C was taken from the named classes to which
a does not explicitly belong but that exhibits at least one explanation for the
query a : C. The axiom a : A was added to the KB, while a : B was considered as
a positive example and a : C as a negative example. Then both the positive and
the negative examples were split in five equally sized subsets and we performed
five-fold cross-validation for each dataset and for each number of workers.

Information about the datasets and training examples is shown in Table 1.

Dataset
of all
axioms

of prob-
abilistic
axioms

of pos.
examples

of neg.
examples

Fold size
(MiB)

Carcinogenesis 74409 186 103 154 18.64
DBpedia 5380 1379 181 174 0.98
education.data.gov.uk 5467 217 961 966 1.03
Mutagenesis 48354 92 500 500 6.01

Table 1. Characteristics of the datasets used for evaluation.

We performed the experiments with 1, 3, 5, 9 and 17 nodes, where the execu-
tion with 1 node corresponds to the execution of EDGE. Furthermore, we used
both single-step and dynamic scheduling in order to evaluate the two scheduling
approaches. It is important to point out that the quality of the learning is inde-
pendent of the number of nodes, i.e. the parameters found with 1 node are the
same as those found with n nodes, and of the type of scheduling. Table 2 shows
the running time in seconds for parameter learning on the three datasets with
different configurations.

Figure 3 shows the speedup obtained as a function of the number of machines
(nodes). The speedup is the ratio of the running time of 1 worker to the running
time of n workers. We can note that the speedup is significant even if it is

10

Dataset EDGE
EDGEMR

Dynamic Single-step
3 5 9 17 3 5 9 17

Carcinogenesis 847 441.8 241 147.2 94.2 384 268.4 179.2 117.8
DBpedia 1552 1259.8 634 364.6 215.2 1155.6 723.8 452.6 372.6
education.data.gov.uk 6924.2 3878.2 2157.2 1086 623.2 3611.6 2289.6 1331.6 749.4
Mutagenesis 1439.4 635.8 399.8 223.2 130.4 578.2 359.2 230 124.6

Table 2. Comparison between EDGE and EDGEMR in terms of running time (in
seconds) for parameter learning.

sublinear, showing that a certain amount of overhead (the resources, and thereby
the time, spent for the MPI communications) is present. The dynamic scheduling
technique has generally better performance than single-step scheduling.

3 5 9 17
0

2

4

6

8

10

12

N. of Nodes

S
p
e
e
d
u
p

DBPedia dynamic

DBPedia single−step

Carcinogenesis dynamic

Carcinogenesis single−step

edu−gov dynamic

edu−gov single−step

mutagenesis dynamic

mutagenesis single−step

Fig. 3. Speedup of EDGEMR relative to EDGE with single-step and dynamic schedul-
ings.

7 Conclusions

EDGE is an algorithm for learning the parameters of probabilistic knowledge
bases under the DISPONTE semantics. In this paper we presented EDGEMR,
which is a distributed version of EDGE based on the MapReduce approach.

11

We performed experiments over four datasets with an increasing number of
nodes. The results show that parallelization significantly reduces the execution
time, even if in a sublinear trend. The sublinearity is caused by the overhead.

We are currently working on a way to distribute structure learning of prob-
abilistic knowledge bases under DISPONTE semantics. In particular we would
like to develop a MapReduce version of LEAP [12].

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York, NY, USA (2003)

2. Bellodi, E., Lamma, E., Riguzzi, F., Albani, S.: A distribution semantics for prob-
abilistic ontologies. CEUR Workshop Proceedings, vol. 778, pp. 75–86. Sun SITE
Central Europe (2011)

3. Bellodi, E., Riguzzi, F.: Expectation Maximization over Binary Decision Diagrams
for probabilistic logic programs. Intell. Data Anal. 17(2), 343–363 (2013)

4. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discovery. In: 20th International Joint Conference on Artificial
Intelligence. vol. 7, pp. 2462–2467. AAAI Press (2007)

5. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

6. Ishihata, M., Kameya, Y., Sato, T., Minato, S.: Propositionalizing the EM al-
gorithm by BDDs. In: Late Breaking Papers of the International Conference on
Inductive Logic Programming. pp. 44–49 (2008)

7. Patel-Schneider, P, F., Horrocks, I., Bechhofer, S.: Tutorial on OWL (2003)
8. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Epistemic and statistical probabilistic

ontologies. In: Uncertainty Reasoning for the Semantic Web. CEUR Workshop
Proceedings, vol. 900, pp. 3–14. Sun SITE Central Europe (2012)

9. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Computing instantiated explanations
in OWL DL. In: AI*IA 2013. LNAI, vol. 8249, pp. 397–408. Springer (2013)

10. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Parameter learning for probabilistic
ontologies. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994, pp. 265–270.
Springer, Heidelberg, Germany (2013)

11. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Probabilistic description logics under
the distribution semantics. Semantic Web - Interoperability, Usability, Applicabil-
ity 6(5), 447–501 (2015)

12. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Learning probabilistic de-
scription logics. In: Bobillo, F., Carvalho, R.N., Costa, P.C., d’Amato, C., Fanizzi,
N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW
III, pp. 63–78. LNCS, Springer International Publishing (2014)

13. Riguzzi, F., Lamma, E., Bellodi, E., Zese, R.: BUNDLE: A reasoner for proba-
bilistic ontologies. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994, pp.
183–197. Springer, Heidelberg, Germany (2013)

14. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Proceedings of the 12th International Conference on Logic Programming.
pp. 715–729. MIT Press (1995)

15. Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007)

12

