Collaborative decision in multi agent learning of action
models

Christophe Rodrigues®, Henry Soldano!+%, Gauvain Bourgne?, and Céline Rouveirol!

1 L.LP.N, UMR-CNRS 7030, Univ. Paris-Nord, 93430 Villetaneuse, France
2 LIP6, Université Pierre et Marie Curie, Sorbonne Universités, 75005 Paris
3 ABI, Université Pierre et Marie Curie, Sorbonne Universités, 75005 Paris

Abstract. Consistency-based collaborative on line learning of relational action
models has been recently presented. This framework considers a community of
agents, each rationally acting following their relational action model, and as-
sumes that the observed effect of past actions that led an agent to revise its action
model can be useful to other agents of the community, potentially speeding up
the on-line learning process of agents in the community. In the present article, we
discuss how collaboration can be extended in this framework at the individual de-
cision level. More precisely, we first discuss how an agent may predict the effect
of some action in its current state through a voting process taking into account
all the action models in the community. Second, when an agent fails to produce
a plan, using its own action model for reaching a goal from its current state, we
study how it can interact with the other agents of the community for selecting
an appropriate action that will allow it to revise its action model and progress
towards its goal.

1 Introduction

Adaptive behavior studies how an autonomous agent can modify its own behavior in or-
der to adapt to a complex, changing and possibly unknown environment. Any adaptive
agent needs to simultaneously learn from its experience and act to fulfill various goals.
Thus, an adaptive system needs to integrate some kind of online learning together with
action selection mechanisms. Adaptation within relational representations has been pri-
marily addressed by Relational Reinforcement Learning (RRL) [5] by extending the
classical Reinforcement Learning (RL) problem to first order representations. In the
indirect or model-based Reinforcement Learning framework [17] the agent explicitly
learns such an action model, allowing it to predict the effect of actions, and use it as
an input of a symbolic planner, whose output is a plan to execute in order to reach its
current goal. Indirect RL proved to be very efficient when handling relational — Datalog
— representations [3, 8].

A recent work [15,16] proposed a community of autonomous agents, in which each
agent has both capabilities of learning on-line an action model represented as a rela-
tional rule set, and planning with this action model [14]. Each agent acts in its envi-
ronment following its relational action model, and exchanges information with other
agents following the general multi agent learning protocol SMILE [1,2]. Intuitively, the

2 Christophe Rodrigues, Henry Soldano, Gauvain Bourgne, and Céline Rouveirol

SMILE protocol is based on a ”consistency maintenance* process: after revising its cur-
rent model in order to ensure that the revised model is consistent with the observations
it has memorized, the agent communicates its revised model to the other members of
the community, and possibly receives past observations they have memorized and that
contradict the revised model. After a number of such revision/criticism interactions, re-
sulting in a global revision, the revised model is stated as globally consistent with the
observations memorized by all the agents.

We present here a significant extension of this work oriented towards decision and
planning at the agent level. First, we consider that, to take some decision, the agent
needs to predict the effect of a given action in the current state. Rather than only con-
sidering its own action model, it will use a voting procedure taking into account the
other agents’ individual predictions to make the final prediction. The effect of this vot-
ing mechanism is, as expected, particularly useful in the early stages of learning, when
agents models are still very diverse. Second, let us consider the case where, during a
leaning episode, the agent is unable to build any plan for reaching the current goal it has
been assigned from its current state. Rather than performing some action independent
from the goal to reach, for instance, by randomly selecting an applicable action, or by
implementing more sophisticated, individual, active strategies [8, 14], it will then ask
to other agents whether they are able to build such a plan, for this pair of current and
goal states, given their action model. In case of success, agents will then send back the
first action of their plans, the requesting agent can then select, among all proposed first
actions of these plans an action to perform, therefore keeping on orienting its actions
towards the assigned goal and reducing the risk of applying illegal actions —i.e., actions
without effects.

In this article, we design this new collaborative behavior and investigate during our
experiments to what extent they help the agents in being successful in predicting effects
and successfully accomplishing tasks. We also consider the effect of these behaviors
on the learning speed in the community. The paper is organized as follows : IRALe is
described in Section 2, while adaptation of iISMILE to relational action model learn-
ing is described in Section 3. Then, Section 4 details the new collaborative behaviors
mentioned above. Finally, experiments are detailed and interpreted in section 5.

2 Relational Action Learning

In this section, we discuss the relational action model revision algorithm IRALe [14]
that each agent uses to revise its relational action model. IRALe learns a STRIPS-like
action model as a set of rules from state/action/effect triples. Several rules can be asso-
ciated to each action, where each rule completely describes the effect of the action in
a given context. In this way, the model allows to represent conditional effects. IRALe
only memorizes counter-examples, namely examples that have provoked a prediction
error (the observed effect is not the predicted one) at some point during the model con-
struction. IRALe learns deterministic rules, i.e. once the preconditions of some rule are
satisfied, the rule always predicts the same effect. The algorithm is primarily intended
to learn in the realizable case, i.e., when there exists an exact action model, but has been
proven to be accurate when learning in the presence of some amount of noise [13]

Collaborative decision in multi agent learning of action models 3

Related work Learning planning operators has been studied intensively, including the
problem of learning the effects of actions, in the context of Relational Reinforcement
Learning (RLL). The first model that integrated an incremental action model and policy
learning is MARLIE [3]. Learning relational action rules has also been studied in the
context of inductive logical programming by Otero et al. [11]. In both cases, the model
predicts the value of each possible effect literal (positive or negative) separately. Let us
also mention the work of Xu et al. [18] and Mourao et al. [10], that both learn black box
models in batch mode. Mourao and colleagues propose an additional step for extracting
rules after a black box model has been learned. [19, 20] learn models as sets of rules
from plan traces, but they do not incrementally revise this model.

Other works [8, 12] address stochastic effects. Learning is then performed from
scratch and needs prior memorization of the whole set of observations.

2.1 States, actions, examples and rules

Examples are described as conjunctions of ground literals. Following a STRIPS-like
notation, state literals that are not affected by the action are not described in the effect
part. The examples are denoted by z.s/z.a/x.e.add, x.e.del, with x.s a conjunction of
literals, x.a a literal of action and, regarding the effect part, x.e.add a conjunction of
positive literals and x.e.del a conjunction of negated literals. Some examples may have
an empty effect list (i.e., z.del = x.add = 1), accounting for illegal action applications
in specific contexts [14].

Example 1. Figure 1 displays an example e of the action move in a blocks world:

onTable(a), onTable(b), on(c,a)/move(c,b)/on(c,b), —on(c, a). O
LA
a b b
S 1Y
X.S X.S

Fig. 1. Example of a move action in a simple blocks world

IRALe builds an action model, made of a set of rules 7" according to a set of ob-
served examples O that have been memorized during the agent history. Each rule r
is composed by a precondition r.p, an action r.a and an effect r.e, and is denoted as
r.p/r.a/r.e. r.pis a conjunction of positive literals which have to be satisfied to apply
the rule, 7.a a is a literal defining the performed action, r.e is composed of two sets of
literals: r.e.add is the set of literals getting true when the rule is applied, and r.e.del is
the set of literals getting false when the rule is applied. According to a rule r, an action
r.a has no other effects but those described by r.e. A default rule is implicitly added to

4 Christophe Rodrigues, Henry Soldano, Gauvain Bourgne, and Céline Rouveirol

T for any action a, whenever no rule for a applies, the action is predicted to have no
effect, i.e. e.del = e.add = (). Note that in an action rule, preconditions and effect may
contain (existential) variables that do not appear in the action literal.

2.2 Rule covering and contradiction

Matching operations between rules and examples relies on subsumption under Object
Identity, denoted as OI-subsumption [6], which is an intuitive partial order relation
when learning action rules for planning [12].

Rule matching definition relies on the definitions of pre-matching and post-matching
functions. Pre-matching checks whether a given rule may apply to predict the effect of
a given action in a given state, and post-matching checks which rule(s) of the action
model may explain the effect observed in the example. The question of whether the
action model contradicts or is consistent with an example is addressed through the fol-
lowing definitions. Given an example and a rule pre-matching the example, covering
checks whether the effect part of the example is accurately explained/predicted by the
rule, while rule contradiction appears whenever the rule incorrectly predicts the out-
comes of the action. The model 7" needs to be revised whenever the current action
model fails to predict the observed effect of some action in the current state. The model
includes a default rule that predicts the empty effect whenever no other rule pre matches
a given state/action pair. In case of failure, the state/action/effect example x,, is said to
contradict the model, is stated as a counter-example and memorized in O. A model T’
is said complete with respect to O whenever no example in O makes 7" incomplete, and
T is said coherent with respect to O whenever no example in O makes 7" incoherent. In
both cases of contradiction, the model T" needs to be updated to T” in order to preserve
coherence and completeness w.r.t. x,, and the other past counter-examples in O.

2.3 Online revision of the action model

The interactions between the agent and the environment produce examples, and when
an example contradicts the model, the latter has to be revised by modifying or adding
one or several rules. When such a new counter-example z,, is encountered, two kinds
of modifications may have to be performed, either generalization or specialization (see
[14] for details). We focus here on the generalization process, that takes place in order to
preserve completeness of the model, whenever no rule of 7" pre-matches z,,. The rules
of T" which are candidates for generalization are such that r, up to the generalization of
some constants into variables, post-matches x,,. Preconditions are then generalized with
x,, using least general generalization under OI subsumption. If such a generalization
does not contradict any example in O (preserving coherence), 7 is replaced by the new
minimally generalized rule. If no consistent generalization exists, x,, becomes a rule
and is added as such to 7T'. Finally, x,,, as a counter-example, is stored in O.

Note that only counter-examples are memorized in O;, i.e., observations that con-
tradicted the current model at some time point. This is sufficient to ensure that learning
converges, in the realizable case.

Collaborative decision in multi agent learning of action models 5
3 Action Model Learning in a community of agents

3.1 Individualistic collaborative learning

In this section, we present a framework for collective incremental action model learning
relying on the SMILE framework [1, 2].

A community of agents, or n-MAS, is a set of agents aj, ..., a,. Each agent a;
has a model, here a set of action rules 7}, that will be revised during the learning pro-
cess, together with a set of counter-examples O;. The set of all counter-examples stored
in the MAS is denoted by O (for all agents j € {1,..,n},E = Ujcq1,.n}O;). The
consistency properties are defined as follows.

Definition 1

- An IRALe agent a; is a-consistent iff T; is consistent with respect to O; (see section
2.2), i.e., the agent model T; correctly predicts observed effects x.e for all counter-
examples in O;.

- An IRALe agent a; is mas-consistent iff T; is consistent with respect to O, i.e., to all
counter-examples stored by agents of the n-MAS.

The global revision M is triggered by an agent a; upon direct observation of a con-
tradictory observation x, denoted as an internal counter-example. This counter-example
breaks a-consistency, enforcing revision of T; into 77 and is stored in O;. An interaction
I(a;, a;) between the learner agent a; and an agent a;, acting as a critic, is as follows:

1. Agent a; sends the revision Ti' to a;;

2. Agent a; checks the revision T7. If T7 is a-consistent with respect to its set of
counter-examples O, a; sends a notification of acceptance of T} to a,. Otherwise,
a; sends a counter-example ' € O;, denoted as an external counter-example for
a;, such that 2’ contradicts 7. Then, 2’ is stored in O;.

An iteration is then composed of a local revision performed by the learner agent a;,
followed by a sequence of interactions I(a;,a;). If an external counter-example 2 is
transmitted to a;, this triggers a new iteration, starting with a new revision of the learner
to restore its a-consistency. When all critics have sent a notification of acceptance of a
proposed revision T';, a; is mas-consistent [1,2].

We consider here the case where an agent never modifies its own current hypothesis
but for internal or external counter-examples. Such agents are denoted as individualistic.
When the learner agent a; restores its mas-consistency, its new action model Ti’, is now
consistent with the new counter-example set O {x} stored in the community. However,
the other agents a; for j # 1, i.e. the critics, are not guaranteed to be consistent with
the new counter-example z. This leads to define the following delayed mas consistency

property:
Definition 2 Let O' = UO! be the information stored in the MAS at time t

— An agent a; is mas-consistent® iff it is mas-consistent at time t.

6 Christophe Rodrigues, Henry Soldano, Gauvain Bourgne, and Céline Rouveirol

— A n-agents community aq, . . ., a, is said to be delayed consistent if each agent is
consistent® with t = min{ty, ..., t,} where each t; is the time of the last revision
of agent a;.

— A revision mechanism is delayed mas-consistent iff an agent applying at some time
t this global revision mechanism maintains the delayed consistency of the MAS.

The following property is then the basis of individualistic learning following the
iSMILE protocol [1].

Proposition 1.) is delayed mas-consistent.

At a given time ¢, a n-MAS ay, ..., a, is delayed consistent. The set of examples the
MAS is consistent with is O'™ where t,,, = min(t;) and ¢; is the time of last revision
of agent each a; immediately preceding ¢. Note that counter-examples that have been
handled during the interval ¢ —t,,, have only been seen by subsets of agents of the MAS.
We will denote as the desynchronization effect the decrease in average accuracy, with
respect to a single agent whose memory would be O?, resulting from the delay between
the various revision times ¢;. This desynchronization effect increases as the number of
agents increases. A way to reduce this effect by increasing communications has been
previously investigated [1].

3.2 The agent behavior model

We consider here a community of individualistic agents acting in their own environ-
ment. The behavior of an agent ¢ is as follows: at a given moment, the agent has its own
current action model 7; and corresponding counter-examples memory O;. It is also pro-
vided with some goal it has to reach, as for instance stacking block b on top of block
c. The agent tries to build a plan, using some planning mechanism. If it succeeds in
building a plan, this means that its current action model predicts some effect é of the
first action a of the plan in the current state s. It will then perform this action, observing
the effect e. If e = ¢, this means that the new current state s’ is as intended in the plan
execution and the agent will apply the next action of the plan. Otherwise, this predic-
tion error defines a new counter-example = with z.s = s, x.a = a,x.e = e, the current
action model is revised locally and the new model is transmitted to the other agents,
therefore triggering the iSMILE M global revision process.

If planning fails, we study in this paper two strategies. In the first standard strat-
egy, a random action is selected and performed. Illegal actions, i.e., actions that do not
produce any observable effect in the current state, are not filtered out at that step. If
the selected action produces some non empty effect, the state changes and planning is
attempted again until a new plan can be tentatively executed. A second more informed,
community-aided, strategy is described hereunder.

4 Community-aided effects prediction and action selection

Until now, the role of the community to which an agent belongs, when the agent’s on
line learns its action model, has been focussed on directly increasing the accuracy of the

Collaborative decision in multi agent learning of action models 7

agent’s model by sending to the agent, on an utility basis, observations that contradicts
the agent’s current model [15, 16]. In this section, we investigate how an agent could
benefit from the other agents action models to improve its own decisions and call this
a community-aided decision process. This is possible because we consider the iSMILE
individualistic collaborative scheme, in which each agent learns its own model and
has its own example memory, thus resulting in a diversity of actions models in the
community. This corresponds to a form of ensemble learning: several hypotheses are
produced and together exploited on new, unlabelled, situations [4].

We consider two simple ways for an agent to benefit from the other agents’ models.
The first one is a voting procedure, taking into account other agent’s action models
and allowing the querying agent to perform more accurate predictions. Note that this
does not directly affect its learning trajectory. The second way has a direct impact on the
agent’s learning trajectory. In the agent behavior model as described above, the learning
trajectory of the agent depends on a goal to achieve and in its current state it will try to
make a plan for that. We propose hereunder the following agent behavior: whenever an
agent fails to plan, it will ask other agents to propose some action to perform in its own
current state to make it closer to its goal.

In both cases, we will consider as an informed agent, with respect to such a query,
an agent whose model allows answering to the query. In the first case, such an informed
agent has a rule in its own model that predicts a non empty effect for the (current
state,action) pair sent by the querying agent. In the second case, an informed agent
succeeds in building a plan, according to its own model, for the (current state,goal)
pair sent by the querying agent. In what follows, only informed agents’ answers to a
query are considered by the querying agent. This is effective because the IRALe action
models are biased towards either accurately predicting non empty action effects or, by
default, predicting empty effects.

4.1 Voting to predict action effects to make better decisions

To benefit from other agents’ models, the agent may send to all other agents a (current
state, action) pair and ask for their predictions, regarding the action’s effect, according
to their own models. The agent may then perform a community-aided effect prediction
using a Majority Voting process: when an agent asks the effect of a given action in a
given state, the only agents (including itself) considered as informed and allowed to
vote are those having some rule prematching the state for this action (i.e., the default
rule predicting the empty effect for this action does not apply). The effect predicted by
the majority of the voting agents is stated as being predicted by the querying agent.

4.2 Selecting an action to get closer to the current goal when single agent
planning fails

In case the agent is unable to build a plan for a given (current state,goal) pair, it sends
this pair to all other agents and it collects plans from those agents able to build one.
The agent will then perform the most frequent action initiating the collected plans. This
community aided action selection, can be seen as a kind of active learning: in case an
agent does not know which action to perform to get closer to the goal, it will apply an

8 Christophe Rodrigues, Henry Soldano, Gauvain Bourgne, and Céline Rouveirol

action that most informed agents advise. It is highly probable that this action does have
a non empty effect and that applying this action will provide an informative positive
counter-example to the agent. Clearly, applying such an action modifies its learning
trajectory. If advices from other agents are reliable, the agent will learn useful rules
for solving its goal and will successfully achieve more goals. However will this allow
the agent to converge faster (in terms of number of actions to perform) towards an
accurate action model? We propose hereunder experiments to study this community
aided decision process.

S5 Experiments

5.1 Domains

We are interested here in studying the impacts of community-aided effect prediction
and of community-aided action selection in two domains with different characteristics.
The first one is a variant of the blocks world domain in which color predicates for
blocks are introduced*. This domain requires learning several rules for capturing the
impact of blocks color on the effect of the action move. In the colored-blocks world,
when the agent performs the action move(a, b), a is actually moved on top of b only
if @ and b have the same color. Otherwise, a is not moved and its color shifts to the
same color as b. We run experiments for the 7 blocks with 2 colors domain (7b2c). This
domain has been studied already in [15, 16] in terms of average accuracy of the agents’
models, average number of plans obtained and number of messages exchanged.

The second domain is the Rover domain from the International Planning Compe-
tition®, it is characterized by a large number actions but a single rule per action and
preconditions with many literals for each action. This domain has been used previously
to investigate action learning [10], but in a different experimental protocol: in [10],
examples are generated independently and randomly with 50% legal and 50% illegal
actions, while our agents follow episodes and revise their models on-line, therefore fol-
lowing a state/action/effect. . . /action/effect learning trajectory. In the Rover domain, an
agent represents a base monitoring a team of r rovers equipped with ¢ cameras. These
rovers navigate on some area of a planet surface, divided in w way-points, and the team
has to perform o objectives regarding science gathering operations. The results of the
experiments are communicated to the base. A particular rover domain in our experi-
ments is described as the tuple (7, w, o, ¢) and is denoted as Rover-rwoc. Main features
of the two domains, i.e. maximal arities of actions, number of preconditions and effect
predicates, total number of actions and rules in the target model are reported hereunder:

Domain| Actions |Prec./effects|#rules
#act. |arity | #pred. | arity

7h2c 1 2 4 2 7
Rover | 9 6 27 3 12

* A problem generator for the colored blocks world problem is available at http://lipn.
univ-parisl3.fr/~rodrigues/colam.
3 http://ipc.icaps—-conference.org/

Collaborative decision in multi agent learning of action models 9

5.2 Experimental protocol

Experiments each consist of NV runs and are performed for communities of 1 and 20
agents. For each agent, a run is divided into episodes of at most 50 actions each. The
agent starts the first episode with an empty model®and the current model at the end
of an episode is the starting model at the beginning of the next episode. During an
episode, the agent explores its environment, starting from a random state, and tries to
reach a random goal, both provided by some external controller. The random goal is
reachable from the random initial state given the perfect action model. Collaborative
learning follows the iISMILE protocol and exploration is performed according to the
agent behavior described in section 3.2. Each agent uses FF [7] as a planner. For that
purpose, the goal, domain and action model are translated into an equivalent PDDL [9]
planning task. The FF planner is then allowed a short time (2s) to find a plan, otherwise
planning is stated to have failed. Previously, this protocol has been used to experiment
collaborative online learning with IRALE agents within a iSMILE community [15, 16].

We consider two scenarios, namely the Base scenario, in which an agent acts ran-
domly when it fails forming a plan, and the community-aided action selection scenario
(section 4). In both scenarios, we measure the standard accuracy together with the ma-
jority voting accuracy, both averaged on all agents. These accuracies are compared with
the standard accuracy of a single agent and reported versus the total number of ac-
tions performed in the community, whatever is the number of agents (from 1 to 20).
This means that we are interested here in the efficiency of learning with respect to the
ressources available to the community and that the single agent here has a clear advan-
tage, as it does not have to cope with the desynchronization effect (see Section 3.1).
These accuracies are estimated using a separate test set of examples according to the
distribution of effects as met during a trajectory. In both scenarios we also measure the
average proportion of goals for which successful plans have been executed versus the
total number of actions performed in the community. Of course, when there are many
agents, each agent meets it efficiency objectives much sooner — in terms of number of
actions per agent — than an isolated agent.

Community-aided action effect prediction We display hereunder in both the 7b2c do-
main (Figure2(a)) and the Rover domain (Figure 2(b)) the agent average predictive ac-
curacy, in the standard and community-aided effect prediction scenarios, versus the total
number of actions performed within the 20-agents community. We also report the corre-
sponding single agent curve. Clearly the single agent curve is better than the 20-agents
community curve, thus revealing the desynchronization effect mentioned above, but the
informed agents voting procedure is effective in eliminating this effect in both domains.
We also observe that the community-aided accuracies are slightly better than the single
agent accuracy in both domains, demonstrating therefore some ensemble learning like
benefit.

Community-aided action selection Figure 3, we report the average ratio of goals achieved
by an agent per action performed by the agent versus the total number of actions per-
formed within the 20-agents community as a task oriented measure of learning success.

® Except in the Rover domain where communication rules are assumed to be known by the
agent.

10 Christophe Rodrigues, Henry Soldano, Gauvain Bourgne, and Céline Rouveirol

7b2c Rover

098
0,96
094
0,92

09| f

—— Single agent
—— 20 agents
-----20 agents vote

—Single agent
—— 20 agents

0.88 ----20 agents vote
0,86

Predictive accuracy
Predictive accuracy

0,84 f
082

OVSD 500 1000 1500 2000 2500 3000 3500 4000 0‘9750 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of actions performed in the community Number of actions performed in the community
(a) Effect of voting,7b2c domain (b) Effect of voting, Rover domain

Fig. 2. Average agent accuracy in a n-agents community with and without community-aided pre-
dictions versus total number of actions in the community

In both the 7b2c (Figure 3(a)) and Rover (Figure 3(b)) domains, we compare the results
obtained without and with aided-community action selection. We also report the cor-
responding single agent curve. In both domains, the community aided action selection
strategy demonstrates a positive effect on the ratio of goals achieved per action per-
formed. In the Rover domain, the effect is stronger, most probably because building a
plan requires in this domain rules for several actions, and benefitting from the sugges-
tions of the most accurate agents results in more success in achieving goals. Note that,
especially in the Rover domain, the community is more efficient in achieving its tasks
than the single agent.

7b2c Rover

0,045 0,0025
004
0,035 0.002

0,03

— Single agent 0,0015 — Single agent
0,025 — 20 agents — 20 agents
0,02 20 agents action 20 agents action
selection 0,001 selection

0,015
0,01 0,0005

0,005

0
01000 2000 3000 4000 5000 6000 7000 8000 9000

Number of tasks achieved per action unit
Number of tasks achieved per action unit

0
0 500 1000 1500 2000 2500 3000 3500 4000

Number of actions performed in the community Number of actions performed in the community

(a) Community aided action selection, 7b2c (b) Community aided action selection,
Rover

Fig. 3. Ratio of number of achieved goals per action in a n-agents community with and without
community-aided action selection versus total number of actions in the community

Predictive accuracy in the Community-aided action selection scenario Community-
aided action selection modifies the learning trajectory, i.e. results in a different explo-

Collaborative decision in multi agent learning of action models 11

ration of states than the basic action selection strategy. The latter strategy can then be
considered as an active learning strategy. Figure 4 compares, in both 7b2c (Figure 4(a))
and Rover (Figure 4(b)) domains, the predictive accuracies resulting from the standard
learning trajectory with those resulting from the learning trajectory resulting from the
community aided action selection strategy. In the 7b2c domain, the community-aided
action selection brings a clear benefit at the beginning of the learning curve, and after
that, has a negative effect on predictive accuracy. This is observed both when measur-
ing the standard single agent accuracy and when measuring the voting accuracy. To
a lesser extent, we observe the same behavior in the Rover domain. This means that
focussing on exploitation of models within the community results first in an efficient
active exploration, allowing fast learning of actions with non empty effects. However,
at some point, some action rules which are not necessary for planning may fail to be
learned, therefore resulting in a slower convergence towards the target model. The effect
is stronger in the 7b2c case where only one (relational) action is involved, and where
missing some unfrequent action rule has no negative effect on planning. Conversely,
in the Rover domain, where many actions have to be combined when planning, goal-
directed community-aided exploration has to be exhaustive to enhance the ratio of goals
achieved by agents, and results in less overfitting.

7b2c Rover

0,98
096 |
0941 —— 20 agents

- 20 agents vote

—— 20 agents
0,92 - 20 agents vote
09} 20 agents action
selection

20 agents vote &
action selection

20 agents action
selection

20 agents vote &
action selection

088 4
086 |

Predictive accuracy

Predictive accuracy

084/}
0,82
0.8

0,975
"0 500 1000 1500 2000 2500 3000 3500 4000 01000 2000 3000 4000 5000 6000 7000 8000 9000

Number of actions performed in the community Number of actions performed in the community

(a) Effect of voting,7b2c domain (b) Effect of voting, Rover domain

Fig. 4. Average agent accuracy in a n-agents community with and without community-aided ac-
tion selection versus total number of actions in the community. The dotted curves represent the
accuracies when informed agents vote to predict action effects, in both the standard trajectory
and the community aided action selection trajectory.

6 Conclusion

We have investigated the impact of collaboration at decision time in a community of
agents who revise their relational action model, when communications are limited to
the exchanges necessary to ensure learning convergence for each agent in the commu-
nity, while allowing agents to benefit, when revising their model, from all observations
memorized in the community. In such a collaboration, only informed agents, i.e. agents

12 Christophe Rodrigues, Henry Soldano, Gauvain Bourgne, and Céline Rouveirol

whose action model is relevant to the decision to be taken, are considered, both re-
garding predictive accuracy and goal oriented action selection. The experiments show
that, first, allowing informed agents to vote does enhance average predictive accuracy
of agents, therefore balancing the effect of desynchronisation within a community. Sec-
ond, allowing informed agents to propose actions to perform when an agent fails to plan
significantly increases in the number of tasks successfully achieved during the commu-
nity history, although it may result in a slower convergence towards a perfect model.

References

1. G.Bourgne, D. Bouthinon, A. El Fallah Seghrouchni, and H. Soldano. Collaborative concept
learning: non individualistic vs individualistic agents. In Proc. ICTAI, pages 549-556, 2009.
2. G. Bourgne, A. El Fallah-Seghrouchni, and H. Soldano. Smile: Sound multi-agent incre-
mental learning. In Proc. AAMAS, page 38, 2007.
3. T. Croonenborghs, J. Ramon, H. Blockeel, and M. Bruynooghe. Online learning and exploit-
ing relational models in reinforcement learning. In Proc. IJCAI, pages 726-731, 2007.
4. Thomas G. Dietterich. Ensemble methods in machine learning. LNCS, 1857:1-15, 2000.
5. S. Dzeroski, L. De Raedt, and K. Driessens. Relational reinforcement learning. Machine
Learning, 43:7-52, 2001.
6. F. Esposito, S. Ferilli, N. Fanizzi, T. M. A. Basile, and N.Di Mauro. Incremental learning
and concept drift in inthelex. Intell. Data Anal., 8(3):213-237, 2004.
7. J. Hoffmann. FF: The fast-forward planning system. The Al Magazine, 2001.
8. T. Lang, M. Toussaint, and K. Kersting. Exploration in relational domains for model-based
reinforcement learning. JMLR, 13:3725-2768, 2012.
9. D. McDermott. The 1998 Al planning systems competition. Al Magazine, 21(2):35-55,
2000.
10. K. Mourdo, L. S. Zettlemoyer, R. P. A. Petrick, and M.Steedman. Learning strips operators
from noisy and incomplete observations. In Proc. UAI, pages 614-623, 2012.
11. R.P. Otero. Induction of the indirect effects of actions by monotonic methods. In Proc. ILP
2005, pages 279-294, 2005.
12. H. M. Pasula, L. S. Zettlemoyer, and L. Kaelbling. Learning symbolic models of stochastic
domains. JAIR, 29:309-352, 2007.
13. C. Rodrigues, P. Gérard, C. Rouveirol, and H. Soldano. Incremental learning of relational
action rules. In Proc. ICMLA, pages 451-458. IEEE Press, 2010.
14. C. Rodrigues, P. Gérard, C. Rouveirol, and H. Soldano. Active learning of relational action
models. In Proc. ILP 2011, volume 7207 of LNCS, pages 302-316. Springer, 2012.
15. C. Rodrigues, H. Soldano, G. Bourgne, and C. Rouveirol. A consistency based approach on
action model learning in a community of agents. In Proc. AAMAS, pages 1557-1558, 2014.
16. Christophe Rodrigues, Henry Soldano, Gauvain Bourgne, and Céline Rouveirol. Multi agent
learning of relational action models. In Proc. ECAI, pages 1087-1088, 2014.
17. R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART
Bull., 2:160-163, 1991.
18. J. Z. Xu and J. E. Laird. Instance-based online learning of deterministic relational action
models. In Proc. AAAI, 2010.
19. Q. Yang, K. Wu, and Y Jiang. Learning action models from plan examples using weighted
max-sat. Artificial Intelligence, 171(2-3):107 — 143, 2007.
20. H. H. Zhuo, T. A. Nguyen, and S. Kambhampati. Refining incomplete planning domain
models through plan traces. In Proc. IJCAI, 2013.

