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Abstract. Expert knowledge can often be represented using default
rules of the form “if A then typically B”. In a probabilistic framework,
such default rules can be seen as constraints on what should be derivable
by MAP-inference. We exploit this idea for constructing a Markov logic
network M from a set of first-order default rules D, such that MAP infer-
ence from M exactly corresponds to default reasoning from D, where we
view first-order default rules as templates for the construction of proposi-
tional default rules. In particular, to construct appropriate Markov logic
networks, we lift three standard methods for default reasoning. The re-
sulting Markov logic networks could then be refined based on available
training data. Our method thus offers a convenient way of using expert
knowledge for constraining or guiding the process of learning Markov
logic networks.

1 Introduction

Markov logic is a popular framework for statistical relational learning [20]. For-
mulas in Markov logic essentially correspond to weighted first-order formulas,
which act as soft constraints on possible worlds. In current applications, the
weights are typically learned from data, while the first-order formulas are either
hand crafted or obtained using standard rule learning methods.

The fact that a domain expert could manually specify (some of) the formu-
las, or could inspect learned formulas, is an important strength of Markov logic.
Unfortunately, the weights associated with these formulas do not have an easily
interpretable meaning. This limits the potential of Markov logic, as it means that
domain experts cannot offer much guidance in terms of how the weights should
be set (e.g. in applications with little or no training data) or cannot verify the
quality of learned weights (e.g. in applications where the quality of the training
data is in doubt). Often, however, Markov logic networks (MLN) are not used
for evaluating probabilities but for finding the most likely truth assignment of
unobserved variables, given the available evidence, i.e. for mazimum a posteriori
(MAP) reasoning. In such cases, the precise values of the weights are only rele-
vant inasmuch as they influence the result of MAP queries. In this setting, we can
instead ask for constraints on how MAP reasoning should behave as opposed to
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asking a domain expert to specify weights. For example, the expert could specify
constraints such as “if all we know is that x is a bird, then using MAP reasoning
we should be able to conclude that x can fly”, which is in agreement with the
semantics of the default rule “birds can typically fly” in System P [13,2].

Thus, a domain expert could be involved in the process of learning an MLN
by providing a set of defaults, which are interpreted as constraints on the ranking
of possible worlds induced by the MLN. Taking this idea one step further, in this
paper, we show how a specific MLN can be constructed from the default rules
provided by the expert. Constructing this MLN requires us to select a specific
probability distribution that is compatible with the defaults. This selection prob-
lem is closely related to the problem of defining the closure of a set of defaults,
which has been widely studied in the field of non-monotonic reasoning [14, 9, 10].
In particular, several proposals to define this closure are based on constructing
a specific probability distribution [4,10]. As we will show, it is possible to lift
these approaches and thus obtain an efficient and principled way to construct
MLNSs that are compatible with a given set of defaults.

To date, the use of expert knowledge for guiding or even replacing weight
learning has only received limited attention. One exception is [17], which con-
structs an MLN based on (potentially inconsistent) conditional probabilities pro-
vided by domain experts. While this can be useful in some applications, it relies
on the ability of experts to provide meaningful probability estimates. However,
humans are notoriously poor at judging likelihood. For example, properties that
are common among the typical elements of a class of objects are often assumed
to be likely in general [22]. Moreover, experts may be able to specify which prop-
erties are most likely to hold, in a given context, without being able to quantify
their likelihood. In such situations, our default-rule-based approach would be
more natural than approaches that force experts to estimate probabilities. On
the other hand, our approach will only provide meaningful results for MAP
queries: numerical input will be difficult to avoid if we want the constructed
MLN to produce satisfactory conditional probability estimates.

This paper is structured as follows. The next section recalls some prelimi-
naries from Markov logic and the non-monotonic reasoning literature. Then in
Section 3 we show how three well-known approaches to non-monotonic reasoning
can be implemented as MAP inference in a particular MLN. By lifting the con-
structions from Section 3, in Section 4 we show how MLNs can be constructed
whose MAP-consequences are compatible with a given set of first-order default
rules. Finally, Section 5 evaluates the performance of the resulting MLNs in a
standard classification task.

2 Background

2.1 Markov logic networks

A Markov logic network (MLN) [20] is a set of weighted formulas (F, wg), where
F ' is a classical first-order formula and wp is a real number, intuitively reflecting



Lecture Notes in Computer Science 3

a penalty that is applied to possible worlds that violate F. We will sometimes
also use the notation wp : F to denote the formula (F,wp). Given a set of
constants C'; an MLN M induces the following probability distribution on the
set of possible worlds w:

1
pM(w):EeXp Z wrnp(w) |, (1)
(F,wF)GM

where np(x) is the number of true groundings of F in the possible world w, and
Z =) ,p(w) is a normalization constant to ensure that p can be interpreted
as a probability distribution. Sometimes, formulas (F,wg) with wp = 400 are
considered to represent hard constraints. In such cases, we define py(w) = 0
for all possible worlds that do not satisfy all of the hard constraints, and only
formulas with a real-valued weight are considered in (1) for the possible worlds
that do.

The main inference task for MLNs which we will consider is full MAP infer-
ence. Given a set of ground literals (the evidence), MAP inferences aims to com-
pute the most probable configuration of all unobserved variables (the queries).
Standard approaches for performing MAP inference include a strategy based on
MaxWalkSAT [20] and a cutting plane based strategy [21,16]. Given a set of
ground formulas F, we write max(M, E) for the set of most probable worlds of
the MLN that satisfy F. We will also consider the following inference relation,
initially proposed for penalty logic in [7]:

(M,E) Fyapa iff Vw € max(M,E) :wlE o (2)

with M an MLN, « a ground formula and E a set of ground formulas. Note that
(M, E) Fpap o means that the formula « is satisfied in all the most probable
worlds which are compatible with the available evidence.

2.2 Reasoning about default rules in System P

A variety of approaches have been proposed to reason about default rules of
the form “if « then typically 8 holds”, which we will denote as « |~ 3. Most
approaches are based on the idea of defining a preference order over possible
worlds and insisting that 3 is true in the most preferred (i.e. the most normal)
of the worlds in which « is true [18,13,19,9,3]. The axioms of System P [13]
capture a set of desirable properties for an inference relation for default rules:

Reflexivity al~a

Left logical equivalence If o = o and a |~ 8 then o' |~ 3
Right weakening If 8 = 8’ and « |~ then a |~ 5’

OR If apvyand B~ then aV S~y

Cautious monotonicity If af~ 8 and a vy then a A S|~y
CUT If aAB v and a8 then avy
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where &« = o and 8 | (' refer to equivalence and entailment from clas-
sical logic. Note that applying the axioms of System P to a set of defaults
A={ay B, ..., n p Br} corresponds to a form of monotonic reasoning about
defaults. However, as the set of consequences that can be obtained in this way is
limited, it is common to consider a non-monotonic inference relation whose set
of consequences is closed under the axioms of System P as well as the following

property:
Rational monotonicity If a |~ and we cannot derive a =y then a Ay |~ S.

In this paper, we will consider three such inference relations: the rational closure
[19], the lexicographic closure and the maximum entropy closure. A default a |~
is tolerated by a set of defaults v; |~ 81, ..., Ym P~ I if the classical formula o A
B A N;(—7i V §;) is consistent. The rational closure is based on a stratification
Aq,..., Ay of A, where each A; contains all defaults « |~ 5 from A which are
tolerated by A\ (A1 U...UA;_4). It can be shown that such a stratification
always exists when A satisfies some natural consistency properties (see [19] for
details). Intuitively, A; contains the most general default rules, A, contains
exceptions to the rules in Ay, Az contains exceptions to the rules in A,, etc.
This stratification is known as the Z-ordering. Let j be the smallest index for
which A" = A; U...U A, U {a} is consistent. Then « |~ is in the rational
closure of A if A™ |= 3. When a set of hard rules I' needs to be enforced,
the Z-ordering can be generalized as follows [3]. Each set A; then contains those
defaults a [~ § for which I'U{aAB}U{—a; V7;: (a; v B;) € A\(A1U...UA; 1)}
Finally, we define Ag = I', where Ay, ..., Ap_1 is the stratification of A that was
obtained.

The rational closure encodes the intuition that in case of conflict, specific rules
should have priority over more generic ones. However, it requires us to ignore
all the defaults in A; U...A;_1, even defaults which are intuitively unrelated to
this conflict. The lexicographic closure [1] addresses this issue as follows. For a
propositional interpretation w, we write sat(w, A;) for the number of defaults
satisfied by w, i.e. sat(w,A;) = {apB: (apB) € Aj,w = —a V }. We say
that an interpretation wj is lex-preferred over an interpretation ws, written wy <
wa, if there exists a j such that sat(wi,A;) > sat(we, A;) while sat(wi, ;) =
sat(wa, A;) for all i > j. The default « |~ is in the lexicographic closure of A
if 3 is satisfied in all the most lex-preferred models of «, i.e. Vw € [of : (w [~
)= €fa] :w <w.

Another approach to default reasoning is based on the principle of maximum
entropy [10]. To describe how the maximum-entropy ranking of possible worlds
can be computed, we need some additional terminology. A possible world w is
said to falsify a rule a8 if w E o A =8 and said to verify it if w &= a A S.
A set of default rules A is said to be a minimal core if for any rule a |~ 3, the
set {a =Bt U(A\ {a |~ S}) is consistent. Given a minimal core set of defaults
A, the maximum-entropy ranking is obtained as follows [10]. Let I" be the set
of rules tolerated by A. For each rule r € I', we set kprp(r) = 1. While I # A
we repeat the following steps. Let 2 be the set of models w which do not falsify
any of the rules in A\ I" and verify at least one of these rules. For each model
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w € §2, we compute Ky p(w) = {kme(alP): (app) € INw = a A =S} Let
w* be the model in 2 with minimum rank. Each rule « |~ 8 that is verified by
w* is added to I', and its rank is computed askyg(al 8) =1+ kyp(w®).

3 Encoding ground default theories in Markov logic

It is well-known that any set of defaults A which is closed under the axioms
of System P and rational monotonicity corresponds to a linear ranking x of
possible worlds, such that a |= 8 iff k(e A B) > k(a A =), where we write x(7)
for a formula 7 as an abbreviation for max{x(w): w |= 7}. Since the ranking &
can be encoded as a probability distribution, and every probability distribution
on possible worlds can be represented as an MLN, it is clear that there must
exist an MLN M such that (a |~ ) € A iff (M, «) bpyap . More generally, for
any (i.e. not necessarily closed) set of defaults A, there exists an MLN M such
that (M, «a) Fyap B iff @~ is in the rational closure of A, and similar for
the lexicographic and maximum-entropy closures. We now show how the MLNs
corresponding to these three closures can be constructed.

Transformation 1 (Rational closure) Let A be a set of ground default rules
and let © be a set of hard constraints (clauses). Let Ay, ..., Ay be the Z-ordering

of AUO. Let the MLN M be defined as follows: Ule({(ﬁaiVﬁa\/b’? o) appe
A U{(a;, D YU{(¢p,0): ¢ € @})UU?ZQ{(ai\/—\ai_l, 00)} where a; are auziliary
literals. Then (M, ) Fyap B iff ap~ B is in the rational closure of (A, ©O).

Transformation 2 (Lexicographic closure) Let A be a set of ground de-
fault rules and let © be a set of hard constraints (clauses). Let Aq, ..., Ay be
the Z-ordering of AU ©. Let the MLN M be defined as follows: Ule{(ﬁoz v
B, A): afeB e A}U{(¢,00): ¢ € O} where Ny = 1+ 3171 |Aj] - Aj fori > 1
and A\ = 1. Then (M, ) Fyap B iff al~ B is in the lexicographic closure of
(4,0).

Transformation 3 (Maximum-entropy closure) Let A be a set of ground
default Tules and let © be a set of hard constraints (clauses). Let k be weights of
rules corresponding to the mazimum-entropy closure of AU®. Let the MLN M
be defined as follows: {(—aV B,k(alB)) : app € A} U {(p,0) : ¢ € O}.
Then (M, &) Fyap B iff ale B is in the mazimum-entropy closure of (A, ©).

Ezample 1. Consider the default rules A = {bird |~ flies, antarcticAbird p —flies}.
Then My = {(—ay V —bird V flies,00), (mag V —antarctic V —bird vV —flies,
o0), (a1,1), (az,1), (a2 V —ay,00)} is the result of Transformation 1 , and
Mo = {(=bird V flies, 1), (mantarctic V =bird V —flies, 2)} is the result of Trans-
formation 2, which in this example coincides with the result of Transformation
3.
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4 Encoding non-ground default theories in Markov logic

While reasoning with default rules has mostly been studied at the propositional
level, a few authors have considered first-order default rules [8, 12]. Similar as for
probabilistic first-order rules [11], two rather different semantics for first-order
defaults can be considered. On the one hand, a default such as P(z)  Q(x)
could mean that the most typical objects that have the property P also have
the property . On the other hand, this default could also mean that whenever
P(z) holds for a given z, in the most normal worlds Q(z) will also hold. In other
words, first-order defaults can either model typicality of objects or normality
of worlds [8]. In this paper, we will consider the latter interpretation. Given
that we only consider finite universes (as is usual in the context of MLNs), we
can then see a first order default as a template for propositional defaults. For
example P(z) ~Q(z) can be seen as a compact notation for a set of defaults
{P(c1) ~Q(e1), ...y P(cn) o Q(cn) }- Note that this approach would not be pos-
sible for first-order defaults that model the typicality of objects.

In particular, the first-order default theories we will consider consist of first-
order logic formulas (hard rules) and default rules of the form « |~ 3, where «
is a conjunction of literals and ( is a disjunction of literals. Our approach can
be straightforwardly extended to quantified default rules, where the scopes of
quantifiers may be the whole default rules, and not just either the antecedent or
the consequent of a rule. While this could be of interest, we do not consider this
for the ease of presentation.

Definition 1 (Markov logic model of a first-order default theory). Let
(A, 0) be a first-order default theory with A the set of default rules and © the
set of hard rules. A Markov logic network M is a model of the default logic
theory AU O if it holds that: (i) P[X = w] = 0 whenever w = O, and (ii) for
any default rule a8 € A and any grounding substitution 6 of the unquantified
variables of o~ B, either {af} U O F L or (M,a) Fyap B0. We say that
(A, 0) is satisfiable if it has at least one model.

Below we will describe three methods for constructing Markov logic models of
first-order default theories, generalizing Transformations 1-3. For convenience,
we will use typed formulas (nevertheless, we will assume that default rules given
on input are not typed for simplicity). For instance, when we have the formula
a = owns(person : X, thing : Y) and the set of constants of the type person is
{alice, bob} and the set of constants of the type thing is {car} then a corresponds
to the ground formulas owns(alice, car) and owns(bob, car). In cases where there
is only one type, we will not write it explicitly. For a constant or variable x, we
write 7(z) to denote its type. Two formulas F; and Fy (either both conjunc-
tions or both disjunctions of literals) are said to be isomorphic when there is
a substitution 6 of the variables of F; such that F10 = Fy (where = denotes
logical equivalence). Two default rules D1 = a3 51 and Dy = ag |~ B2 are said
to be isomorphic if there exists a substitution 6 of the variables of Dy such that
a10 = as and 3160 = B>. Two default theories A1 U ©1 and Ay U Oy are said
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to be isomorphic, denoted by A; U @1 &~ Ay U O, if there is a bijection ¢ from
elements of A; U @7 to elements of Ay U @5 such that for any F € A U 64,
i(F') ~ F. When j is a permutation of a subset of constants from AU © then
Jj(AUO) denotes the default theory obtained by replacing any constant ¢ from
the subset by its image j(c).

Definition 2 (Interchangeable constants). Let AU O be a non-ground de-
fault theory. A set of constants C is said to be interchangeable in AU © if
J(AUB) = AU O for any permutation j of the constants in C.

The set of maximal interchangeable subsets of a set of constants is the uniquely
defined partition of this set and will be called the interchangeable partition. To
check whether a set of constants C is interchangeable, it is sufficient to check
that j(AUO) ~ AU O for those permutations which swap just two constants
from C. Note that the constants do not actually need to appear in AU 6. It
trivially holds that constants which do not appear in AU®@ are interchangeable.
When Z = {Cy,...,C,} is the interchangeable partition of a set of constants then
we may introduce a new type type;.,min(c,) for every C; € C (where lexmin(C)
denotes the lexically® smallest element from C; ). When D = «a |~ 3 is a ground
default rule, we write variabilize( D) to denote the following default rule: A{V, #
Va: ¢,d € const(D),7(c) = 7(d)} Ao/ |~ B’ where const(D) is the set of constants
appearing in D and o/ and 8’ are obtained from « and /3 by respectively replacing
all constants ¢ by a new variable V. of type 7(c). Here # is treated as a binary
predicate which is defined in the set of hard rules ©.

Let C be a set of constants and let Z = {Cy,...,C,} be the interchangeable
partition of the constants from C. Two ground default rules o 1 and as p~ B2
are said to be weakly isomorphic if variabilize(cy |~ 81) and variabilize(as ~ B2)
are isomorphic.

Definition 3 (Ground representatives). Let D = al~ 3 be a default rule
and let T = {Cy,...,Cy} be the interchangeable partition of constants. A set of
ground representatives of D w.r.t. T is a mazimal set of groundings of D by
constants from I such that no two of these groundings are weakly isomorphic.
(If a |~ B is typed then we only consider groundings which respect the typing of
variables.)

A set of ground representatives of a default rule D = a |~ 8 can be constructed
in time O(|C|/P!). While this is exponential in the size of the default rule (which
is usually small), it is only polynomial in the number of classes in the inter-
changeable partition Z and does not depend on the total number of constants.
Let AU 6O be a first-order default theory and C a set of constants. Let R =
Ua I BEA R~ s where R, | 3 denotes a set of ground representatives of o~ 3.

The rational closure for the first-order default theory is based on the partition*

3 Here, we are just ordering the constants by the lexical ordering of their names.
4 With a slight abuse of terminology, we will call A U---U A} the partition of AUGO
even though it is strictly speaking only a partition of A*.
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AT U ..U A} of the set
A* = {wvariabilize(ap~ B): ap» f € R and {a} UOH L}
where A7 is the set of default rules variabilize(o |~ ) € A* such that
{anBYU{=aiV Bi: (aipvBi) € A"\ (AU ...UA}_)}U6O (3)
has a model with Herbrand universe C. When all rules o/ |~ 8’ from the set
AL g = {variabilize(a’ v 5'): o/ B is a ground representative of a |~ 8},

are contained in the same partition class A7 then we can simplify A} by setting
Ar = A7 Uu{ap B\ 47 o g- Furthermore, note that checking the existence of
Herbrand models can be carried out using cutting-plane inference which means
that it is seldom needed to ground the set of default rules completely. We can

now present the lifted counterparts to Transformations 1-3.

Transformation 4 (Lifted rational closure) Let A be a set of default rules
and let © be a set of hard constraints. Let A7 U ---U A} be the partition of
AU O, defined by (3). Let the MLN M be defined as follows: Ule{(—\ai VooV
B,00): ap B e A} U{(a;, 1)} U{(¢,00): ¢ € OFU{(a; V —a;—1,00)} where a;
are auziliary (ground) literals. If (A, ©) is satisfiable then M is a Markov logic
model of (A, O).

Transformation 5 (Lifted lexicographic entailment) Let A be a set of de-
fault rules, let © be a set of hard constraints, and let U be the considered set of
constants. Let Aj U ---U A} be the partition of AU O, defined by (3). Let the
MLN M be defined as follows: Ule{(ﬂoz\/ﬂ, Ai):apepe A U{(p,00): ¢ € O}
where A = 1+ Y5213, seas PN D N fori > 1 and Ay = 1. If (A, )
is satisfiable then M is a Markov logic model of (A, O).

Note that lexicographic entailment may lead to MLNs with very large weights.®

Next, we describe a lifted variant of maximum-entropy entailment. Let AUO
be a first-order default theory and Z the interchangeable partition of constants
from a given set C. Let AT U---U A} be the partition of AU©, defined as in (3)
(without the simplification of merging default rules), and let I" := A}. First, we
construct an MLN M containing the rules from I" and set their weights equal
to 1. For every A with j > 1, while A7 Z I', we repeat the following steps.
We construct a new MLN M’ by adding to the MLN M all rules from the set
{mavB:ap B € (AjU... Ap)\I'} as hard constraints (i.e. with infinite weights).
For every arf~ 8 € A7\ I', we construct its ground representative o' |~ 3" (note
that there is only one ground representative up to isomorphism for any rule in

5 Although existing MLN systems are not able to work with weights as large as are
sometimes produced, due to numerical issues, we have implemented an MLN system
based on cutting-plane MAP inference which can work with arbitrarily large weights.
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A%, which follows from the construction of A¥) and we find a most probable
world wq g of (M, a’); let us write p, . g for its penalty, i.e. the sum of the
weights of the violated rules. Note that w, | g verifies the default rule o~ 8 and
only falsifies rules in I', exactly as in the propositional version of the maximum-
entropy transformation. We then select the rules « |~ with minimum penalty
Pa > add them to I' and to the MLN M with the weight set to 1 + p, . If
M’ does not have any models, the initial set of defaults cannot be satisfiable,
and we end the procedure.

Transformation 6 (Lifted maximume-entropy entailment) Let A be a set
of default rules, let @ be a set of hard constraints, and let U be the considered set
of constants. Let M be the MLN obtained in the last iteration of the procedure
described above. If (A, ©) is satisfiable then M is a Markov logic model of (A, ©).

Ezxample 2. Let us consider the following defaults:

bird(X) |~ flies(X) bird(X) A antarctic(X) ~ —flies(X)
bird(X) A antarctic(X) A (X #Y) A sameSpecies(X,Y) v antarctic(Y)

Let the set of constants be given by C = {tweety, donald, beeper}. Then the
lexicographic transformation yields the MLN {(¢1,1), (¢2,4), (¢3,4)} while the
maximum entropy transformation yields {(¢1,1), (¢2,2), (¢3,3)}, where ¢; =
—bird( X))V flies(Y), ¢p2 = —bird(X)V-sameSpecies(X, Y )V-(X # Y)V-bird(Y)V
—antarctic(X) V antarctic(Y') and ¢35 = —bird(X) V —antarctic(X) V —flies(X).

As the next example illustrates, it is sometimes necessary to split the initial
default rules into several typed specializations.

Ezample 3. Consider the following defaults: bird(X) A (X # tweety) p flies(X),
bird(X) A antarctic(X) p —flies(X) and bird(X) A antarctic(X) A (X # Y) A
sameSpecies(X,Y) ~ antarctic(Y'). Then the lexicographic transformation yields
the MLN {(¢1,1), (¢2,1), (¢3,7), (¢4, 7)}, where:

&1 =—bird(Tppeety : X) V —antarctic(Tupeety : X) V —flies(Tupeety © X ),

o ==bird(X) V (X # Tiweety : tweety) V flies(Y),

o3 =bird(Toeeper : X) V nantarctic(Toeeper : X) V flies(Toeeper + X),
(X

¢pq =—bird(X) V —sameSpecies(X,Y) V =(X #Y), 2bird(Y) V mantarctic(X)

Note that the transformation had to introduce new types corresponding to the
interchangeable sets of constants {{tweety}, { beeper, donald}}. The maximum en-
tropy transformation leads to six such rules.

5 Evaluation

We have evaluated the proposed methods using the well-known UW-CSE dataset,
which describes the Department of Computer Science and Engineering at the
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University of Washington [20]. The usual task is to predict the advised By(person,
person) predicate from the other predicates. A set of rules for this domain has
previously been collected for the experiments in [20]. These rules, however, can-
not be used as default rules because they are not satisfiable in the sense of Defi-
nition 1. Therefore, in order to evaluate our method, we have used the following
consistent set of default rules.

Dy : |~ —advisedBy(S, P)

Dy :  advisedBy(S, Py) |~ —tempAdvised By(S, Pz)

D3 :  advisedBy(S, P) A publication( Pub, S) |~ publication( Pub, P)

Dy: (Py # P3) A advisedBy(S, P1) |~ —advisedBy(S, Ps3)

D5 :  advisedBy(S, P) A ta(C, S, T) I~ taughtBy(C, P, T)

Dg :  professor(P) A student(S) A publication(Pub, P) A publication(Pub, S)
I~ advisedBy(S, P)

D7 professor(P) A student(S) A publication(Pub, P) A publication(Pub, S)A
tempAdvisedBy(S, P2) |~ —advisedBy(S, P)

Dg: (81 # S2) A advisedBy(S2, P) A ta(C, Sz, T) A ta( C, S1, T)A
taughtBy(C, P, T) A student(S1) A professor(P) p advisedBy(S:, P)

Dy : (S1 # S2) A advisedBy(Sz, P) A ta(C, Sz, T) A ta(C, S1, T)A
taughtBy(C, P, T) N student(Sy) A professor(P) A tempAdvisedBy(Sy, P2)
k- —advisedBy(S1, P)

Recall that default rules a |~ in our setting correspond to statements of the
form: for any grounding substitution 0, 50 is true in all most probable worlds of
(M, af). Thus the default rules « |~ 3 we consider should be such that an expert
believes that af being the only evidence, it would make sense to conclude 36.
Seen with this perspective in mind, rule D; states that in absence of any knowl-
edge, we assume that persons S and P are not in the advisedBy relationship.
Rule D, states that if we only know that .S has an advisor then we conclude that
S does not have a temporary advisor. Rule D3 states that advisors are typically
co-authors of their students’ papers. Rule Dy states that students typically only
have one advisor. The rest of the rules can be interpreted similarly. Note that
rules D7 and Dg encode exceptions to rules Dg and Dg.

We computed the lexicographic and maximum-entropy transformations of
these rules using our implementation of the described methods.® We evaluated
the obtained MLNs on the five different subject areas of the UW-CSE dataset,
which is the standard methodology. Specifically, we computed the average num-
ber of true positives and false positives for the advisedBy predicate over 10 runs
of MAP inference, noting that the results can depend on the specific MAP state
that is returned. For comparison, we have used an MLN with the same set of rules

5 Our implementation is based on a cutting-plane inference method for MAP inference
implemented using the SAT4J library [5] and the MLN system Tuffy [15].



Lecture Notes in Computer Science 11

MaxEnt LEX ONES LEARNED

TP FP TP FP TP FP TP FP

Al 10£0 7£0 |[10£0 7£0|86+07 49£09[10£0 2+£0
GRA. 440 5+0 44+0 5£0(35+£07 3.9+£07|2+0 2£0
LAN. 0£0 0£0 00 0£0| 0£0 0£0 20 1+£0
SYS. |10.5£0.5 3.5+05|11+0 3+0|72+£11 244+05|4+0 0x0
THE. 3+£0 3+£0 3£0 3+£0| 3+£0 1.7£07|2£0 1+£0

Table 1. Experimental results for MLNs obtained by the described methods.

but using weights learned discriminatively using Tuffy [15] (LEARNED), and an
MLN with the same set of rules but with all weights set to 1 (ONES). The re-
sults are shown in Table 1. The maximum entropy and lexicographic entailment
have highest recall but at the cost of also having higher number of false positives
(note that the number of pairs which can potentially be in the advisedBy rela-
tionship is in the order of hundreds or thousands). The baseline method ONES
has largest variance. Overall, the best performance seems to be obtained by the
MLNs with learned weights which was an outcome to be expected.

6 Conclusion

We have discussed the problem of constructing a Markov logic network (MLN)
from a set of first-order default rules, where default rules are seen as constraints
on what should be derivable using MAP inference. The proposed construc-
tion methods have been obtained by lifting three well-known methods for non-
monotonic reasoning about propositional default rules: the rational closure, the
lexicographic closure and the maximum-entropy closure. As our evaluation with
the UW-CSE dataset illustrates, our method can be used to construct useful
MLNSs in scenarios where no training data is available. In the future, we would
like to explore the connections between our proposed lifted transformations and
the lifted inference literature. For example, identifying interchangeable constants
is known as shattering in lifted inference [6].
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