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A simple FOL-based neural network model – an example program:

1: brightTetrahedron(A,B,C,D) :- brightTriangle(A,B,C),  brightTriangle(A,B,D), 
brightTriangle(B,C,D), brightTriangle(A,C,D).
1: brightTriangle(X,Y,Z) :- bright(X), bright(Y), bright(Z), edge(X,Y), edge(Y,Z), edge(Z,X).
0.1: brightTriangle(X,Y,Z) :- bright(W), bright(X), bright(Y), bright(Z), edge(X,W), edge(W,Y), 
edge(Y,Z), edge(Z,X). /* A rectangle is almost a triangle too :) */
0.1: bright(blue).
1: bright(green).
2: bright(yellow).
2: bright(white).

Semantics:

1. Value of a ground fact is a parameter (the number on the left)
2. Output of a true ground Horn clause C = h :- b

1
,...,b

k
 is given as:

output(C)= sigmoid(value(b
1
)+...+value(b

k
)-k)

3. Output of a false ground clause is 0.
4. Value of a ground atom A with predicate h is given as follows:

- Let Cs ={C
1
,...,C

m
}be the set of all Horn clauses with h in the head.

- Let Gr(C
i
) denote the set of all true groundings of C

i
 with the ground atom A in the head.

- Then 
value(A) = sigmoid(w

C1 
max

C1 in Gr(C1)
output(C

1
)+...+w

Ck
 max

Ck in Gr(Ck)
output(C

k
)+w

0

A)

5. Value of an atom A is the maximum of the values of its groundings.

Examples of 'brightTetrahedrons(A,B,C,D)':
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Intuitively, we want 

this to hold.

This can be seen as a template for feed-forward neural networks.
The ground network can be constructed as follows from a logic program with weights and a 
query atom (in practice, we use an optimized algorithm which utilizes caching, branch-and-
bound, forward-checking etc., this is just for illustration):

Procedure constructNetworkForClause(C = h:-b
1
, …, b

k
)

best := NULL
'OuterLoop': For each grounding  θ of C

node := a neuron with no inputs and bias equal to -k
For i = 1, …, k

subnetwork = ConstructNetworkForAtom(bθ
i
)

If subnetwork == NULL Or subnetwork.evaluate() == 0
Continue to 'OuterLoop'

Else

Connect subnetwork to node (weight 1)
EndIf

EndFor

If node is better than best
best := node

EndIf
EndFor
Return best

Procedure constructNetworkForGroundAtom(a = 
p(c1,...,ck)

node := a neuron with no inputs and bias w
0

p

For each clause C = p(X1,...,Xk) :- b1, ..., b_m
Let θ be minimal such that p(X1,...,Xk)θ = 

p(c1,...,ck)
subnetwork = constructNetworkForClause(C)
If subnetwork.evaluate() != 0

Connect subnetwork to node with the weight 
specified for C in the program

EndIf
EndFor
Return node

Parameter learning:

Parameter learning is done by repeating the following steps:

1. Construct neural networks for every program H+e
i
 where H is a hypothesis e

i
 is a learning 

example
2. Check if the stopping criterion is met and if so, finish.
3. Perform online backpropagation for a given number of steps for each of the networks 
(updating the shared weights – note that the networks for different examples in the dataset 
can be different but they share some weights).
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Some preliminary experiments:

Experiments were performed on chemical data. The 
structure was selected so that the program would have 
to induce soft clusterings of atom and bond types 
relevant for the respective datasets.

w
toxic1

: toxic :- bond(A1,A2,B1), bond(A2,A3,B2), 

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg2(B2).
w

toxic2
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2), 

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg3(B2).
w

toxic3
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2), 

atg1(A1), atg2(A2),atg3(A3), bg2(B1), bg3(B2).
…
...
w

atg11
: atg1(X) :- atm(X,carbon)

w
atg12

: atg1(X) :- atm(X,hydrogen)

w
atg13

: atg1(X) :- atm(X,nitrogen)

…
...
w

atg21
: atg2X) :- atm(X,carbon)

w
atg22

: atg2(X) :- atm(X,hydrogen)

w
atg23

: atg2(X) :- atm(X,nitrogen)

…
…
...quite large network!

Already with this simple model, we were able to obtain 
competitive accuracies to nFOIL for PTC and 
Mutagenesis.

Future work:

1. Experiments with datasets where the ability to 
construct useful soft concepts (clusters) is expected to 
be useful

2. Structure learning

3. Make it deep



Introduction
• Expert knowledge can often be represented using default rules of 

the form “if A then typically B”. 

• Example (Penguins): 
• “Birds typically fly” - If X is a bird then X typically flies.
• “Antarctic birds typically do not fly” - If X is an antarctic bird 

then X typically does not fly.

• We show how to construct Markov logic networks from rules of 
this type.



Preliminaries



Markov Logic Networks

P (X = x) =

1

Z

exp

0

@
X

(Fi,wi)2M

winFi(x)

1

A

A set of rules           and a universe  —>  prob. distribution (Fi, wi)

[Richardson and Domingos, 2006]

(Preliminaries)



Example (Smokers)
(friends(A,B) ) (smokes(A) , smokes(B)), 1)

(smokes(A) ) cancer(A), 1)

Cancer(A) 

Smokes(A) Friends(A,A) 

Friends(B,A) 

Smokes(B) 

Friends(A,B) 

Cancer(B) 

Friends(B,B) Alice
Bob

[Richardson and Domingos, 2006]

(Preliminaries)



MAP Inference
• Given an MLN M and evidence E, find a possible world x 

which maximises P(X=x) - i.e. a most probable world of 
(M,E)

• MAP-entailment relation [Dupin de Saint-Cyr et al., 1994]  
• ]:

• Example:

(M, E) `MAP ↵ i↵ 8! 2 max(M, E) : ! |= ↵

(M, {smokes(alice),¬smokes(bob)}) `MAP ¬friends(alice, bob)

[Richardson and Domingos, 2006]

(Preliminaries)



Default Rules and System P
• Rules of the form: 

• Example: 

if ↵ then typically � (written ↵ |⇠�)

bird(X) |⇠flies(X)

bird(X) ^ antarctic(X) |⇠¬flies(X)

• From evidence bird(tweety), we should be able to derive 
flies(tweety), but if antarctic(tweety) is added we should 
withdraw flies(tweety).

[Kraus et al., 1990]

(Preliminaries)



System P and Rational Monotony
• Axioms of System P

↵ |⇠↵

If ↵ ⌘ ↵0 and ↵ |⇠� then ↵0 |⇠�

If � |= �0 and ↵ |⇠� then ↵ |⇠�0

If ↵ |⇠ � and � |⇠ � then ↵ _ � |⇠ �

If ↵ |⇠� and ↵ |⇠ � then ↵ ^ � |⇠ �

If ↵ ^ � |⇠ � and ↵ |⇠� then ↵ |⇠ �

• The following rational monotonicity axiom is often added:

If ↵ |⇠� and we cannot derive ↵ |⇠¬� then

↵ ^ � |⇠�

[Kraus et al., 1990]

(Preliminaries)

Reflexivity

Left logical equivalence

Right weakening

Or

Cautious monotonicity

Cut



System P and Rational Monotony  
(representation)

• A set of defaults closed under axioms of System P and 
rational monotony corresponds to a linear ranking     of 
possible worlds such that  



• The MAP-entailment relation also satisfies the axioms of 
System P and the rational monotony axiom.

[Kraus et al., 1990]

↵ |⇠� i↵ max{(!) : ! |= ↵ ^ �} > max{(!) : ! |= ↵ ^ ¬�}

(Preliminaries)



Closures of Default Theories
• A non-exhaustive set of default rules under System P + 

rational monotony may be completed in many ways. 

• Rational closure [Lehmann & Magidor, 92] 

• Lexicographic closure [Lehmann, 95] 

• Maximum-entropy closure [Goldzmidt, Morris, Pearl, 93]

Correspond to different 
rankings of possible 
worlds based on rules.

(Preliminaries)



Z-Ranking
• Rational closure and lexicographic closure are based on so-

called Z-ranking of default rules.*

Partition Δ1 ∪ ... ∪ Δk of Δ, where each Δj contains all formulas α |~ β 
from Δ for which the following set of classical formulas is consistent: 

{↵ ^ �} [ {¬↵i _ �i | (↵i |⇠�i) 2 � \ (�1 [ ... [�j�1)}

(Preliminaries)

bird(X) |⇠flies(X)

bird(X) ^ antarctic(X) |⇠¬flies(X)

hasFeather(X) ^ laysEggs(X) |⇠ bird(X)

bird(X) |⇠flies(X)

bird(X) ^ antarctic(X) |⇠¬flies(X)

hasFeather(X) ^ laysEggs(X) |⇠ bird(X)

Δ1

Δ2

*For simplicity, we do not consider hard rules here, see the paper for the full version.



Rational and Lexicographic Closures

• Given: Z-ranking Δ1 ∪ ... ∪ Δk 

• Rational Closure: 
• Let j be the smallest index for which Δratα = Δj ∪ ... ∪ Δk ∪ {α} is 

consistent. Then α |~ β is in the rational closure of Δ if Δratα |= β.  

• Lexicographic Closure:
• Let sat(ω,Δj) denote number of defaults from  Δj satisfied by ω (as 

classical formulas).  
• ω1 is lex-preferred over an interpretation ω2, if there exists a j such 

that sat(ω1,Δj) > sat(ω2,Δj) while sat(ω1,Δι) = sat(ω2,Δι) for all i>j.  
• The default α|~ β is in the lexicographic closure of Δ if β is 

satisfied in all the most lex-preferred models of α.

(Preliminaries)



Encoding Non-ground 
Default Theories in MLNs



Rationale
• The ranking function κ may also be probability of possible 

worlds (leads to MAP-entailment as |~). 

• Markov logic networks can represent any distribution on a 
finite set of possible worlds. 

=> We can encode closures of default theories in MLNs

But can we do it efficiently? And will the MLNs be compact 
and intuitive? With non-ground theories?     Yes! (this work)



Non-Ground Default Theories
• We view non-ground as templates for specifying ground 

default theories (similar to MLNs). 

• Ground default rules are interpreted as MAP constraints.

Example:

bird(X) |⇠flies(X)

bird(X) ^ antarctic(X) |⇠¬flies(X)

{tweety, donald}
+

A MLN satisfying:

bird(tweety) `MAP flies(tweety)

bird(tweety) ^ antarctic(tweety) `MAP ¬flies(tweety)
bird(donald) `MAP flies(donald)

bird(donald) ^ antarctic(donald) `MAP ¬flies(donald)



Models of  Non-Ground Default Theories

Let � [ ⇥ be a default theory where � is a set of default rules and ⇥ is a set

of hard rules. A Markov logic network M is a model of the default logic theory

� [⇥ if the following holds:

1. P [X = !] = 0 whenever ! 6|= ⇥,

2. for any default rule ↵ |⇠� 2 � and any grounding substitution ✓ of the

unquantified (open) variables of ↵ |⇠�, either {↵✓} [⇥ ` ? or

(M,↵✓) `MAP �✓.

Definition:

This means MLN M with evidence αθ



Lifted Z-Ranking
• Given: a default theory Δ, universe U 
• Procedure:

1. Group interchangeable constants. 
2. Let G ={G1, …, Gk} contain ground nonisomorphic representatives** of rules 

in Δ (w.r.t. interchangeability of constants). 
3. Let L = {L1, …, Lk} contain variabilized variants of the rules from G (using 

typing to distinguish variables corresponding to non-interchangeable 
constants). 

4. Find partition Δ1 ∪ ... ∪ Δk of L, where each Δj contains all formulas  
Li = α |~ β from L for which the following set of classical formulas  
 
 
has a Herbrand model with universe U.

*For simplicity, we do not consider hard rules here, see the paper for the full version. 
**This is related to shattering from lifted inference [Poole, 2003].

{Gi} [ {¬↵i _ �i : (↵i |⇠�i) 2 L \ (L1 [ . . . Lj�1)}



“Rational” MLNs

where ai are auxiliary (ground) literals.  

• If (Δ,Θ) is satisfiable then Μ is a Markov logic model of (Δ,Θ).

M =
k[

i=1

{(¬ai _ ¬↵ _ �,1) : ↵ |⇠� 2 �⇤
i }[

[ {(ai, 1)} [ {(�,1) : � 2 ⇥} [ {(ai _ ¬ai�1,1)}

• Given: Lifted Z-ranking Δ1 ∪ ... ∪ Δk 

• Output:

(Corresponds to reasoning in possibilistic logic.)



“Lexicographic” MLNs

• If (Δ,Θ) is satisfiable then Μ is a Markov logic model of (Δ,Θ).

• Given: Lifted Z-ranking Δ1 ∪ ... ∪ Δk, universe U 

• Output:

where   

and λ1=1.

k[

i=1

{(¬↵ _ �,�i) : ↵ |⇠� 2 �i} [ {(�,1) : � 2 ⇥}

�i = 1 +

i�1X

j=1

X

↵ |⇠ �2�⇤
j

|U|vars(↵ |⇠ �) · �j for i > 1



Example
bird(X) ^ (X 6= tweety) |⇠flies(X),

bird(X) ^ antarctic(X) |⇠¬flies(X)

bird(X) ^ antarctic(X) ^ (X 6= Y ) ^ sameSpecies(X,Y ) |⇠ antarctic(Y )

U = {tweety, donald, beeper}

�1 =(¬bird(⌧tweety : X) _ ¬antarctic(⌧tweety : X) _ ¬flies(⌧tweety : X), 1)

�2 =(¬bird(X) _ ¬(X 6= ⌧tweety : tweety) _ flies(Y ), 1)

�3 =(¬bird(⌧beeper : X) _ ¬antarctic(⌧beeper : X) _ ¬flies(⌧beeper : X), 7)

�4 =(¬bird(X) _ ¬sameSpecies(X,Y ) _ ¬(X 6= Y ) _ ¬antarctic(X) _ antarctic(Y ), 7)



“Max-Entropy” MLNs

• Based on a ranking which refines Z-ranking. 

• Computationally more expensive than rational and 
lexicographic transformations, because it requires running 
MAP-inference to get the ranking. 

• (Covered in the paper in detail.)



Experiments
• UW-CSE, prediction of advisedBy relation 
• A hand-crafted set of default rules:

D1 : |⇠¬advisedBy(S,P)
D2 : advisedBy(S,P1) |⇠¬tempAdvisedBy(S,P2)

D3 : advisedBy(S,P) ^ publication(Pub,S) |⇠ publication(Pub,P)

D4 : (P1 6= P2) ^ advisedBy(S,P1) |⇠¬advisedBy(S,P2)

D5 : advisedBy(S,P) ^ ta(C,S,T) |⇠ taughtBy(C,P,T)

D6 : professor(P) ^ student(S) ^ publication(Pub,P) ^ publication(Pub,S)

|⇠ advisedBy(S,P)

D7 : professor(P) ^ student(S) ^ publication(Pub,P) ^ publication(Pub,S)^
tempAdvisedBy(S,P2) |⇠¬advisedBy(S,P)

D8 : (S1 6= S2) ^ advisedBy(S2,P) ^ ta(C,S2,T) ^ ta(C,S1,T)^
taughtBy(C,P,T) ^ student(S1) ^ professor(P) |⇠ advisedBy(S1,P)

D9 : (S1 6= S2) ^ advisedBy(S2,P) ^ ta(C,S2,T) ^ ta(C,S1,T)^
taughtBy(C,P,T) ^ student(S1) ^ professor(P) ^ tempAdvisedBy(S1,P2)

|⇠¬advisedBy(S1,P)



Experimental Results

MaxEnt LEX ONES LEARNED
TP FP TP FP TP FP TP FP

AI 10± 0 7± 0 10± 0 7± 0 8.6± 0.7 4.9± 0.9 10± 0 2± 0
GRA. 4± 0 5± 0 4± 0 5± 0 3.5± 0.7 3.9± 0.7 2± 0 2± 0
LAN. 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 2± 0 1± 0
SYS. 10.5± 0.5 3.5± 0.5 11± 0 3± 0 7.2± 1.1 2.4± 0.5 4± 0 0± 0
THE. 3± 0 3± 0 3± 0 3± 0 3± 0 1.7± 0.7 2± 0 1± 0

Table 1: Experimental results for MLNs obtained by the described methods.



Conclusions
• It is possible to construct MLNs capturing default 

reasoning with non-ground rules. 

• The method is efficient and allows us to construct MLNs 
with meaningful “MAP-results” even if only expert rules 
and no training examples are available. 

• Next step: Combine this with weight learning (default 
rules as constraints on MAP inference)



Thank You!


