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lNtroauction

- Expert knowledge can often be represented using default rules of
the form “if A then typically B”.

- Example (Penguins):
- “Birds typically fly” - If X is a bird then X typically flies.

- “Antarctic birds typically do not fly” - If X is an antarctic bird
then X typically does not fly.

- We show how to construct Markov logic networks from rules of
this type.



Preliminaries



(Preliminaries)

Markov Logic Networks

[Richardson and Domingos, 2006]

A set of rules (Fi,w;) and a universe —> prob. distribution



(Pre\'\m'\nar'\es)

Example (Smokers)

[Richardson and Domingos, 2006]
(friends(A, B) = (smokes(A) < smokes(B)), 1)

(smokes(A) = cancer(A), 1)

Friends(A,B)

.-
Smokes(B) s Friends(B,B)

Bob

Cancer(B)

Friends(B,A)



(Pre\'\m'\nar'\es)

MAP Inference

[Richardson and Domingos, 2006]

 Given an MLN M and evidence E, find a possible world x
which maximises P(X=x) - i.e. a most probable world of

(M,E)

 MAP-entailment relation [Dupin de Saint-Cyr et al., 1994]

(M,E) |_MAP @

 Example:

iff Vw € max(M, F) : w

— (X

(M, {smokes(alice), msmokes(bob)}) Farap —friends(alice, bob)



(Pre\'\m'\nar'\es)

Default Rules and System P

[Kraus et al., 1990]

e Rules of the form:

if o then typically 8 (written « |~ 5)

e Example:
bird(X) p~ flies(X)
bird( X)) A antarctic(X) |~ —flies(X)

 From evidence bird(tweety), we should be able to derive
flies(tweety), but it antarctic(tweety) is added we should
withdraw flies(tweety).



(Pre\'\m'\nar'\es)

System P and Rational Monotony

» Axioms of System P (Kraus et al., 1990

Refesiy oo
SHIGEAIERANERNGE 1 o = o' and o~ § then o/ | §

If 8 =6 and a |~ 8 then a |~ 5
or If aj~~v and B~ then aV 8~
CAUOUSIMORGIONCY 1f o |~ 5 and o |~ then a A B |~ ~
Cut If a ABvyand alfv B then a7

* The following rational monotonicity axiom is often added:

If aj~ 3 and we cannot derive o |~ —y then
a ANy B



(Preliminaries)

System P and Rational Monotony

(representation)
[Kraus et al., 1990]

* A set of defaults closed under axioms of System P and
rational monotony corresponds to a linear ranking K of
possible worlds such that

a v B iff max{k(w):w FE a AP} > max{k(w):wFE a A5}

e The MAP-entailment relation also satisfies the axioms of
System P and the rational monotony axiom.



(Preliminaries)

Closures of Default Theories

* A non-exhaustive set of default rules under System P +
rational monotony may be completed in many ways.

Correspond to different
* Rational closure [Lehmann & Magidor, 92] > rankings of possible

/ worlds based on rules.
A
* Lexicographic closure [Lehmann, 95]

* Maximum-entropy closure [Goldzmidt, Morris, Pearl, 93]




(Pre\'\m'\nar'\es)

/-Ranking

e Rational closure and lexicographic closure are based on so-
called Z-ranking of default rules.”

Partition A1 u ... u Ax of A, where each Aj contains all formulas a |~ 3
from A for which the following set of classical formulas is consistent:

{Oé A\ 6} U {_IOé@' \ Bz ‘ (CVZ' |N 62) c A \ (Al J...U Aj—l)}

bird(X) p flies(X) bird( X) |~ flies(X) A
hasFeather(X) N laysEqggs(X) p bird(X)

bird(X) A antarctic(X) = flies(X) Ao

bird( X) A antarctic(X) |~ —flies(X)
hasFeather(X) A laysEggs(X) |~ bird( X)

*For simplicity, we do not consider hard rules here, see the paper for the full version.



(Pre\'\m'\nar'\eS)
Rational and Lexicographic Closures

- Given: Z-ranking A¢ u ... u A

- Rational Closure:

 Let jbe the smallest index for which Ay = Aju ... u A u {a} is
consistent. Then a |~ B is in the rational closure of A if A |= .

- Lexicographic Closure:

o Let sat(w,q;) denote number of defaults from A, satisfied by w (as
classical formulas).

* W1 IS lex-preferred over an interpretation wpy, if there exists a j such
that sat(w1,4;) > sat(wsz,4j) while sat(w1,A) = sat(wsz,A) for all i>].

» The default a|~ B is in the lexicographic closure of A if B is
satisfied in all the most lex-preferred models of a.



Encoding Non-grouno
Default Theories iIn MLNs



Rationale

* The ranking function k may also be probability of possible
worlds (leads to MAP-entailment as |~).

 Markov logic networks can represent any distribution on a
finite set of possible worlds.

=> We can encode closures of default theories in MLNs

But can we do it efficiently”? And will the MLNs be compact
and intuitive”? With non-ground theories”?  Yes! (this work)



Non-Ground Default Theories

* We view non-ground as templates for specitying ground
default theories (similar to MLNSs).

e Ground default rules are interpreted as MAP constraints.

Example:

A MLN satistying:

bird(X) p~ flies(X)
bird(X) A antarctic(X) o —flies(X) bird(tweety) Faap flies(tweety)
bird(tweety) N\ antarctic(tweety) b arap —flies(tweety)
(
(

+ bird(donald) Fyrap flies(donald)
{tweet% dOﬂCle} bird(donald) A antarctic(donald) - prap —flies(donald)




Models of Non-Ground Detfault Theories

Definition:

Let A U © be a default theory where A is a set of default rules and O is a set
of hard rules. A Markov logic network M is a model of the default logic theory

A U © if the following holds:

1. P|X =w| =0 whenever w %= O,

2. for any default rule aj~ 8 € A and any grounding substitution 6 of the
unquantified (open) variables of a |~ (3, either {af} UO F L or

(M, al) Fpap B0.

e

This means MLN M with evidence af



|ifted Z-Ranking

e Given: a default theory A, universe U

- Procedure:
1. Group interchangeable constants.

2. Let G ={Gjy, ..., Gk} contain ground nonisomorphic representatives™ of rules
in A (w.r.t. interchangeability of constants).

3. Let L ={Ly, ..., Lk} contain variabilized variants of the rules from G (using
typing to distinguish variables corresponding to non-interchangeable

constants).

4. Find partition A1 u ... u Ak of L, where each A; contains all formulas
Li=a |~ B from L for which the following set of classical formulas

{GifU{~a; VB (aipBi) e L\ (L1 U...Lj_1)}

has a Herbrand model with universe U.

*For simplicity, we do not consider hard rules here, see the paper for the full version.
**This is related to shattering from lifted inference [Poole, 2003].



"Rational” MLNs

e Given: Lifted Z-ranking A1 u ... u Ak
- Output:

M:U{(ﬂai\/ﬂa\/ﬁ,oo): ap e AU
U{(a;, 1)} U{(¢,00): ¢ € O U{(a; V —a;—1,00)}

where a; are auxiliary (ground) literals.

o |f (A,0O) is satisfiable then Mis a Markov logic model of (A,©).

(Corresponds to reasoning in possibilistic logic.)



‘Lexicographic’ MLNs

* Given: Lifted Z-ranking A1 u ... u Ak, universe U
- Output:

U{(ﬂa\/ﬁ,)\i): abBeNYU{(p,00): ¢ €O}

1—1
where  x =1+ Y jurerse 9. for i > 1

and A1=1.
o |f (A,O)is satisfiable then Mis a Markov logic model of (A,0).



Example

bird(X) N (X # tweety) |~ flies(X),
bird(X) A antarctic(X) o —flies(X)
bird(X) N antarctic(X) N (X # Y) A sameSpecies(X,Y)  antarctic(Y)

* U = {tweety, donald, beeper}

X))V (X # Topeety : tweety) V flies(Y'), 1)
Theeper © X ) V antarctic(Tpeeper : X ) V —flies(Toeeper : X ), 7)




"Max-Entropy” MLNSs

 Based on a ranking which refines Z-ranking.

« Computationally more expensive than rational and
lexicographic transtormations, because it requires running
MAP-inference to get the ranking.

e (Covered in the paper in detail.)



EXperiments

« UW-CSE, prediction of advisedBy relation
A hand-crafted set of default rules:

~ —advisedBy(S, P)

advisedBy(S, P1) I~ —~tempAdvisedBy(S, Ps)

advisedBy(S, P) N publication( Pub, S) |~ publication( Pub, P)

(P1 # P3) A advisedBy(S, P1) ~ —advised By(S, Ps)

advisedBy(S, P) A\ ta(C, S, T) I~ taughtBy(C, P, T)

professor(P) N\ student(S) A publication( Pub, P) A publication(Pub, S)
I~ advisedBy(S, P)

professor( P) N\ student(S) A publication( Pub, P) N publication(Pub, S)A
tempAdvised By(S, P2) |~ —advised By(S, P)

(51 # S2) A advisedBy(Sa, P) A ta(C, Sz, T) A ta(C, Sy, T)A
taughtBy(C, P, T) A student(S1) N professor( P) |~ advised By(S1, P)

(51 # S2) A advisedBy(Sa, P) A ta(C, Sa, T) A ta(C, Sy, T)A
taughtBy(C, P, T) A student(S1) A professor(P) N tempAdvisedBy(S1, P2)
I~ —advisedBy(S1, P)



EXperimental Results

MaxEnt LEX ONES LEARNED
TP FP TP FP TP FP TP FP
Al 100 r£0 |10x£0 7x0(86x0.7 4909100 2+£0

GRA. 440 50 40 5x£0(3.5=x=07 39x=07|2=x0 2=x0
LAN. 0=0 00 00 0x0] 0=x0 0=0 20 1=0
SYS. [1054+0.5 3.5+£05|114+£0 34+0|72+1.1 24405 4+£0 0+£0
THE. 30 30 3£t0 30| 3x0 1.7x07]24£0 1=x0

Table 1: Experimental results for MLNs obtained by the described methods.



Conclusions

 |tis possible to construct MLNs capturing default
reasoning with non-ground rules.

* The method is efficient and allows us to construct MLNs
with meaningful “MAP-results™ even it only expert rules
and no training examples are available.

* Next step: Combine this with weight learning (default
rules as constraints on MAP inference)



Thank You!



