
Mine ‘Em All: A Note on
(Complexity of) Mining All Graphs

Ondřej Kuželka1 and Jan Ramon2
1Cardiff University, 2KU Leuven

Horn-Clause Neural Networks

Vojtěch Aschenbrenner1 & Ondřej Kuželka2

1CTU in Prague, 2KU Leuven

A simple FOL-based neural network model – an example program:

1: brightTetrahedron(A,B,C,D) :- brightTriangle(A,B,C), brightTriangle(A,B,D),
brightTriangle(B,C,D), brightTriangle(A,C,D).
1: brightTriangle(X,Y,Z) :- bright(X), bright(Y), bright(Z), edge(X,Y), edge(Y,Z), edge(Z,X).
0.1: brightTriangle(X,Y,Z) :- bright(W), bright(X), bright(Y), bright(Z), edge(X,W), edge(W,Y),
edge(Y,Z), edge(Z,X). /* A rectangle is almost a triangle too :) */
0.1: bright(blue).
1: bright(green).
2: bright(yellow).
2: bright(white).

Semantics:

1. Value of a ground fact is a parameter (the number on the left)
2. Output of a true ground Horn clause C = h :- b

1
,...,b

k
 is given as:

output(C)= sigmoid(value(b
1
)+...+value(b

k
)-k)

3. Output of a false ground clause is 0.
4. Value of a ground atom A with predicate h is given as follows:

- Let Cs ={C
1
,...,C

m
}be the set of all Horn clauses with h in the head.

- Let Gr(C
i
) denote the set of all true groundings of C

i
 with the ground atom A in the head.

- Then
value(A) = sigmoid(w

C1
max

C1 in Gr(C1)
output(C

1
)+...+w

Ck
 max

Ck in Gr(Ck)
output(C

k
)+w

0

A)

5. Value of an atom A is the maximum of the values of its groundings.

Examples of 'brightTetrahedrons(A,B,C,D)':

0

x
1

x
2

x
1
>x

2
>0

Intuitively, we want

this to hold.

This can be seen as a template for feed-forward neural networks.
The ground network can be constructed as follows from a logic program with weights and a
query atom (in practice, we use an optimized algorithm which utilizes caching, branch-and-
bound, forward-checking etc., this is just for illustration):

Procedure constructNetworkForClause(C = h:-b
1
, …, b

k
)

best := NULL
'OuterLoop': For each grounding θ of C

node := a neuron with no inputs and bias equal to -k
For i = 1, …, k

subnetwork = ConstructNetworkForAtom(bθ
i
)

If subnetwork == NULL Or subnetwork.evaluate() == 0
Continue to 'OuterLoop'

Else

Connect subnetwork to node (weight 1)
EndIf

EndFor

If node is better than best
best := node

EndIf
EndFor
Return best

Procedure constructNetworkForGroundAtom(a =
p(c1,...,ck)

node := a neuron with no inputs and bias w
0

p

For each clause C = p(X1,...,Xk) :- b1, ..., b_m
Let θ be minimal such that p(X1,...,Xk)θ =

p(c1,...,ck)
subnetwork = constructNetworkForClause(C)
If subnetwork.evaluate() != 0

Connect subnetwork to node with the weight
specified for C in the program

EndIf
EndFor
Return node

Parameter learning:

Parameter learning is done by repeating the following steps:

1. Construct neural networks for every program H+e
i
 where H is a hypothesis e

i
 is a learning

example
2. Check if the stopping criterion is met and if so, finish.
3. Perform online backpropagation for a given number of steps for each of the networks
(updating the shared weights – note that the networks for different examples in the dataset
can be different but they share some weights).

References:
V. Aschenbrenner, (supervisor O. Kuzelka): Deep Relational Learning with Predicate Invention,
MSc Thesis, CTU in Prague, 2013

Acknowledgement:
Part of this work was done while VA and OK were with CTU in
Prague. OK is supported by Jan Ramon's ERC Starting Grant
240186 ’MiGraNT.

Some preliminary experiments:

Experiments were performed on chemical data. The
structure was selected so that the program would have
to induce soft clusterings of atom and bond types
relevant for the respective datasets.

w
toxic1

: toxic :- bond(A1,A2,B1), bond(A2,A3,B2),

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg2(B2).
w

toxic2
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2),

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg3(B2).
w

toxic3
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2),

atg1(A1), atg2(A2),atg3(A3), bg2(B1), bg3(B2).
…
...
w

atg11
: atg1(X) :- atm(X,carbon)

w
atg12

: atg1(X) :- atm(X,hydrogen)

w
atg13

: atg1(X) :- atm(X,nitrogen)

…
...
w

atg21
: atg2X) :- atm(X,carbon)

w
atg22

: atg2(X) :- atm(X,hydrogen)

w
atg23

: atg2(X) :- atm(X,nitrogen)

…
…
...quite large network!

Already with this simple model, we were able to obtain
competitive accuracies to nFOIL for PTC and
Mutagenesis.

Future work:

1. Experiments with datasets where the ability to
construct useful soft concepts (clusters) is expected to
be useful

2. Structure learning

3. Make it deep

Horn-Clause Neural Networks

Vojtěch Aschenbrenner1 & Ondřej Kuželka2

1CTU in Prague, 2KU Leuven

A simple FOL-based neural network model – an example program:

1: brightTetrahedron(A,B,C,D) :- brightTriangle(A,B,C), brightTriangle(A,B,D),
brightTriangle(B,C,D), brightTriangle(A,C,D).
1: brightTriangle(X,Y,Z) :- bright(X), bright(Y), bright(Z), edge(X,Y), edge(Y,Z), edge(Z,X).
0.1: brightTriangle(X,Y,Z) :- bright(W), bright(X), bright(Y), bright(Z), edge(X,W), edge(W,Y),
edge(Y,Z), edge(Z,X). /* A rectangle is almost a triangle too :) */
0.1: bright(blue).
1: bright(green).
2: bright(yellow).
2: bright(white).

Semantics:

1. Value of a ground fact is a parameter (the number on the left)
2. Output of a true ground Horn clause C = h :- b

1
,...,b

k
 is given as:

output(C)= sigmoid(value(b
1
)+...+value(b

k
)-k)

3. Output of a false ground clause is 0.
4. Value of a ground atom A with predicate h is given as follows:

- Let Cs ={C
1
,...,C

m
}be the set of all Horn clauses with h in the head.

- Let Gr(C
i
) denote the set of all true groundings of C

i
 with the ground atom A in the head.

- Then
value(A) = sigmoid(w

C1
max

C1 in Gr(C1)
output(C

1
)+...+w

Ck
 max

Ck in Gr(Ck)
output(C

k
)+w

0

A)

5. Value of an atom A is the maximum of the values of its groundings.

Examples of 'brightTetrahedrons(A,B,C,D)':

0

x
1

x
2

x
1
>x

2
>0

Intuitively, we want

this to hold.

This can be seen as a template for feed-forward neural networks.
The ground network can be constructed as follows from a logic program with weights and a
query atom (in practice, we use an optimized algorithm which utilizes caching, branch-and-
bound, forward-checking etc., this is just for illustration):

Procedure constructNetworkForClause(C = h:-b
1
, …, b

k
)

best := NULL
'OuterLoop': For each grounding θ of C

node := a neuron with no inputs and bias equal to -k
For i = 1, …, k

subnetwork = ConstructNetworkForAtom(bθ
i
)

If subnetwork == NULL Or subnetwork.evaluate() == 0
Continue to 'OuterLoop'

Else

Connect subnetwork to node (weight 1)
EndIf

EndFor

If node is better than best
best := node

EndIf
EndFor
Return best

Procedure constructNetworkForGroundAtom(a =
p(c1,...,ck)

node := a neuron with no inputs and bias w
0

p

For each clause C = p(X1,...,Xk) :- b1, ..., b_m
Let θ be minimal such that p(X1,...,Xk)θ =

p(c1,...,ck)
subnetwork = constructNetworkForClause(C)
If subnetwork.evaluate() != 0

Connect subnetwork to node with the weight
specified for C in the program

EndIf
EndFor
Return node

Parameter learning:

Parameter learning is done by repeating the following steps:

1. Construct neural networks for every program H+e
i
 where H is a hypothesis e

i
 is a learning

example
2. Check if the stopping criterion is met and if so, finish.
3. Perform online backpropagation for a given number of steps for each of the networks
(updating the shared weights – note that the networks for different examples in the dataset
can be different but they share some weights).

References:
V. Aschenbrenner, (supervisor O. Kuzelka): Deep Relational Learning with Predicate Invention,
MSc Thesis, CTU in Prague, 2013

Acknowledgement:
Part of this work was done while VA and OK were with CTU in
Prague. OK is supported by Jan Ramon's ERC Starting Grant
240186 ’MiGraNT.

Some preliminary experiments:

Experiments were performed on chemical data. The
structure was selected so that the program would have
to induce soft clusterings of atom and bond types
relevant for the respective datasets.

w
toxic1

: toxic :- bond(A1,A2,B1), bond(A2,A3,B2),

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg2(B2).
w

toxic2
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2),

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg3(B2).
w

toxic3
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2),

atg1(A1), atg2(A2),atg3(A3), bg2(B1), bg3(B2).
…
...
w

atg11
: atg1(X) :- atm(X,carbon)

w
atg12

: atg1(X) :- atm(X,hydrogen)

w
atg13

: atg1(X) :- atm(X,nitrogen)

…
...
w

atg21
: atg2X) :- atm(X,carbon)

w
atg22

: atg2(X) :- atm(X,hydrogen)

w
atg23

: atg2(X) :- atm(X,nitrogen)

…
…
...quite large network!

Already with this simple model, we were able to obtain
competitive accuracies to nFOIL for PTC and
Mutagenesis.

Future work:

1. Experiments with datasets where the ability to
construct useful soft concepts (clusters) is expected to
be useful

2. Structure learning

3. Make it deep

Question
• When can graph mining with an intractable

pattern matching operator be fast?

• Motivation: Horváth & Ramon have shown that frequent
bounded-treewidth graphs can be mined in incremental-
polynomial time even though subgraph isomorphism is
NP-hard for them.

Preliminaries
• Isomorphism

• Subgraph isomorphism:

• + other matching operators  
(homeomorphism, minor embedding, induced operators…)

~

4

Frequent Graph Mining
• Given: a database DB of graphs and a frequency threshold t

• Task: Output all nonisomorphic connected graphs
subgraph isomorphic to at least t graphs from DB.

DB:

Example (t=3):

How Typical FGM Algos. Work
Example (t=2):

DB:

Candidates (1):

A B C

Occurrences: {A,B,C} and {A,B,C}

How Typical FGM Algos. Work
Example (t=2):

DB:

Candidates (2):

A B C

Occurrences: {A,B,C} and {A,B,C}

How Typical FGM Algos. Work
Example (t=2):

DB:

Candidates (3):

A B C

Occurrences: {A,B,C} and {A,B,C} and {A,C}

etc…

How Typical FGM Algos. Work
Example (t=2):

DB:

Candidates (3):

A B C

Occurrences: {A,B,C} and {A,B,C} and {A,C}

etc…

Such an algorithm needs to be able to:
• remove isomorphic candidates (iso. not known to be in P)
• compute occurrences using subgraph isomorphism (NP-hard)

Complexity of FGM
• Complexity measures:

• Polynomial delay: if the time between printing the next fr.
graph (or terminating) is bounded by a polynomial of the size of
input,

• Incremental polynomial time: if the time between printing next
fr. graph (or terminating) is bounded by a polynomial of the size
of input and of the size of output so far,

• Output polynomial time: if the algorithm finishes in time
polynomial in the combined size of input and the entire output.

im
pl

ie
s

im
pl

ie
s

Known Results

✓DB Hereditary graph classes with poly-time subgraph iso.

POLY DELAY!

✓DB All graphs
NOT EVEN OUTPUT-POLY TIME POSSIBLE!

Bounded-treewidth graphs
INCREMENTAL-POLY TIME!
✓DB

Despite
NP hard subgraph

iso.

[Horvath & Ramon, 2010] ???
Poly delay???

In
te

re
st

in
g

ca
se

s

Open questions!

Change of Perspective
• A more general problem (Ordered graph mining):

• Output all nonisomorphic connected graphs with
frequency at least 1 and their occurrences in DB (i.e.
which DB graphs they match by subgraph iso.):

• F -> I: from frequent to infrequent (generalizes FGM)
• I -> F: from infrequent to frequent (generalizes IGM)
• S -> L: from smallest to largest
• L -> S: from largest to smallest

(If you cannot solve a problem, George Pólya in “How to Solve It”
suggests studying a more general problem.)

Available Results

All Graphs Planar Graphs
Bounded-
Treewidth

Graphs

S -> L ?? ?? IncPoly [Horvath
and Ramon, 2010]

L -> S ?? ?? ??

F -> I Not IncPoly unless
P=NP [known] ?? IncPoly [Horvath

and Ramon, 2010]

I -> F ?? ?? ??

(From correspondence between FGM and F -> I)

New Results and Corollaries

All Graphs Planar Graphs
Bounded-
Treewidth

Graphs

S -> L Not IncPoly unless
FPT = W[1] ?? IncPoly [Horvath

and Ramon, 2010]

L -> S
IncrPoly iff GI in P,

Poly delay if
CANON in P

Poly delay Poly delay

F -> I Not IncPoly unless
P=NP [known]

Not IncPoly unless
P=NP

IncPoly [Horvath
and Ramon, 2010]

I -> F Not IncPoly unless
P=NP

Not IncPoly unless
P=NP

Not IncPoly unless
P=NP

Corollaries of our theorems

Positive

Negative

(More general results in the paper.)

Relative Hardness
• Difficulty of the problems for the considered classes of graphs:

L->S

I->F

F->I S->L

(conjectured)

??

Large to Small (Details)
Require: database DB of transaction graphs

Ensure: all connected (induced) subgraphs and their occurrences

1: let ALL be a data structure for storing graphs and their occurrences (as

described in the main text).

2: for G 2 DB do

3: ADD(G, {ID(G)}, ALL)
4: endfor

5: let m be the maximum order

1
of a graph in DB.

6: for (l := m; l > 0; l := l � 1) do

7: for H 2 KEYS(l, ALL) do
8: OCC GET(H,ALL)
9: PRINT(H,OCC)

10: for H 0 2 REFINE(H) do

11: if H 0
is connected then

12: ADD(H 0, OCC,ALL)
13: endif

14: endfor

15: endfor

16: DELETE(l, ALL)
17: endfor

1Here, order of a graph G, denoted by |G|. is either |V (G)|+ |E(G)| for subgraph mining
or |V (G)| for induced subgraph mining.

• Simple, yet poly-delay algorithm for bounded
TW graphs, planar graphs, ….

• It achieves poly-delay with NP-hard pattern
matching operators and even if FGM cannot be
solved in output-poly time (planar graphs).

• It may be combined with constraints such as
maximum graph diameter which even leads to
practical algorithms

• It can be generalised to (induced)
homeomorphism and (induced) minor emb.

Conclusions
• Theory:

• New results for complexity of graph mining with NP-hard pattern
matching operators (some pretty surprising).

• We have proved analogical results for induced subgraph
isomorphism, (induced) homeomorphism and (induced) minor
embedding

• Practice:
• Both the positive and negative results give guidelines e.g. for

developing practical subgraph kernels.
• Larger-to-smaller algorithm:

• practically useful for mining subgraphs of bounded diameter
• surprisingly also useful for mining all induced subgraphs of

molecules of up to 25 non-hydrogen atoms (+ bigger molecules
with additional hacks)

Thank you!

