
A Note on Restricted Forms of LGG
Ondřej Kuželka1 and Jan Ramon2

1Cardiff University, 2KU Leuven

Horn-Clause Neural Networks

Vojtěch Aschenbrenner1 & Ondřej Kuželka2

1CTU in Prague, 2KU Leuven

A simple FOL-based neural network model – an example program:

1: brightTetrahedron(A,B,C,D) :- brightTriangle(A,B,C), brightTriangle(A,B,D),
brightTriangle(B,C,D), brightTriangle(A,C,D).
1: brightTriangle(X,Y,Z) :- bright(X), bright(Y), bright(Z), edge(X,Y), edge(Y,Z), edge(Z,X).
0.1: brightTriangle(X,Y,Z) :- bright(W), bright(X), bright(Y), bright(Z), edge(X,W), edge(W,Y),
edge(Y,Z), edge(Z,X). /* A rectangle is almost a triangle too :) */
0.1: bright(blue).
1: bright(green).
2: bright(yellow).
2: bright(white).

Semantics:

1. Value of a ground fact is a parameter (the number on the left)
2. Output of a true ground Horn clause C = h :- b

1
,...,b

k
 is given as:

output(C)= sigmoid(value(b
1
)+...+value(b

k
)-k)

3. Output of a false ground clause is 0.
4. Value of a ground atom A with predicate h is given as follows:

- Let Cs ={C
1
,...,C

m
}be the set of all Horn clauses with h in the head.

- Let Gr(C
i
) denote the set of all true groundings of C

i
 with the ground atom A in the head.

- Then
value(A) = sigmoid(w

C1
max

C1 in Gr(C1)
output(C

1
)+...+w

Ck
 max

Ck in Gr(Ck)
output(C

k
)+w

0

A)

5. Value of an atom A is the maximum of the values of its groundings.

Examples of 'brightTetrahedrons(A,B,C,D)':

0

x
1

x
2

x
1
>x

2
>0

Intuitively, we want

this to hold.

This can be seen as a template for feed-forward neural networks.
The ground network can be constructed as follows from a logic program with weights and a
query atom (in practice, we use an optimized algorithm which utilizes caching, branch-and-
bound, forward-checking etc., this is just for illustration):

Procedure constructNetworkForClause(C = h:-b
1
, …, b

k
)

best := NULL
'OuterLoop': For each grounding θ of C

node := a neuron with no inputs and bias equal to -k
For i = 1, …, k

subnetwork = ConstructNetworkForAtom(bθ
i
)

If subnetwork == NULL Or subnetwork.evaluate() == 0
Continue to 'OuterLoop'

Else

Connect subnetwork to node (weight 1)
EndIf

EndFor

If node is better than best
best := node

EndIf
EndFor
Return best

Procedure constructNetworkForGroundAtom(a =
p(c1,...,ck)

node := a neuron with no inputs and bias w
0

p

For each clause C = p(X1,...,Xk) :- b1, ..., b_m
Let θ be minimal such that p(X1,...,Xk)θ =

p(c1,...,ck)
subnetwork = constructNetworkForClause(C)
If subnetwork.evaluate() != 0

Connect subnetwork to node with the weight
specified for C in the program

EndIf
EndFor
Return node

Parameter learning:

Parameter learning is done by repeating the following steps:

1. Construct neural networks for every program H+e
i
 where H is a hypothesis e

i
 is a learning

example
2. Check if the stopping criterion is met and if so, finish.
3. Perform online backpropagation for a given number of steps for each of the networks
(updating the shared weights – note that the networks for different examples in the dataset
can be different but they share some weights).

References:
V. Aschenbrenner, (supervisor O. Kuzelka): Deep Relational Learning with Predicate Invention,
MSc Thesis, CTU in Prague, 2013

Acknowledgement:
Part of this work was done while VA and OK were with CTU in
Prague. OK is supported by Jan Ramon's ERC Starting Grant
240186 ’MiGraNT.

Some preliminary experiments:

Experiments were performed on chemical data. The
structure was selected so that the program would have
to induce soft clusterings of atom and bond types
relevant for the respective datasets.

w
toxic1

: toxic :- bond(A1,A2,B1), bond(A2,A3,B2),

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg2(B2).
w

toxic2
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2),

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg3(B2).
w

toxic3
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2),

atg1(A1), atg2(A2),atg3(A3), bg2(B1), bg3(B2).
…
...
w

atg11
: atg1(X) :- atm(X,carbon)

w
atg12

: atg1(X) :- atm(X,hydrogen)

w
atg13

: atg1(X) :- atm(X,nitrogen)

…
...
w

atg21
: atg2X) :- atm(X,carbon)

w
atg22

: atg2(X) :- atm(X,hydrogen)

w
atg23

: atg2(X) :- atm(X,nitrogen)

…
…
...quite large network!

Already with this simple model, we were able to obtain
competitive accuracies to nFOIL for PTC and
Mutagenesis.

Future work:

1. Experiments with datasets where the ability to
construct useful soft concepts (clusters) is expected to
be useful

2. Structure learning

3. Make it deep

Horn-Clause Neural Networks

Vojtěch Aschenbrenner1 & Ondřej Kuželka2

1CTU in Prague, 2KU Leuven

A simple FOL-based neural network model – an example program:

1: brightTetrahedron(A,B,C,D) :- brightTriangle(A,B,C), brightTriangle(A,B,D),
brightTriangle(B,C,D), brightTriangle(A,C,D).
1: brightTriangle(X,Y,Z) :- bright(X), bright(Y), bright(Z), edge(X,Y), edge(Y,Z), edge(Z,X).
0.1: brightTriangle(X,Y,Z) :- bright(W), bright(X), bright(Y), bright(Z), edge(X,W), edge(W,Y),
edge(Y,Z), edge(Z,X). /* A rectangle is almost a triangle too :) */
0.1: bright(blue).
1: bright(green).
2: bright(yellow).
2: bright(white).

Semantics:

1. Value of a ground fact is a parameter (the number on the left)
2. Output of a true ground Horn clause C = h :- b

1
,...,b

k
 is given as:

output(C)= sigmoid(value(b
1
)+...+value(b

k
)-k)

3. Output of a false ground clause is 0.
4. Value of a ground atom A with predicate h is given as follows:

- Let Cs ={C
1
,...,C

m
}be the set of all Horn clauses with h in the head.

- Let Gr(C
i
) denote the set of all true groundings of C

i
 with the ground atom A in the head.

- Then
value(A) = sigmoid(w

C1
max

C1 in Gr(C1)
output(C

1
)+...+w

Ck
 max

Ck in Gr(Ck)
output(C

k
)+w

0

A)

5. Value of an atom A is the maximum of the values of its groundings.

Examples of 'brightTetrahedrons(A,B,C,D)':

0

x
1

x
2

x
1
>x

2
>0

Intuitively, we want

this to hold.

This can be seen as a template for feed-forward neural networks.
The ground network can be constructed as follows from a logic program with weights and a
query atom (in practice, we use an optimized algorithm which utilizes caching, branch-and-
bound, forward-checking etc., this is just for illustration):

Procedure constructNetworkForClause(C = h:-b
1
, …, b

k
)

best := NULL
'OuterLoop': For each grounding θ of C

node := a neuron with no inputs and bias equal to -k
For i = 1, …, k

subnetwork = ConstructNetworkForAtom(bθ
i
)

If subnetwork == NULL Or subnetwork.evaluate() == 0
Continue to 'OuterLoop'

Else

Connect subnetwork to node (weight 1)
EndIf

EndFor

If node is better than best
best := node

EndIf
EndFor
Return best

Procedure constructNetworkForGroundAtom(a =
p(c1,...,ck)

node := a neuron with no inputs and bias w
0

p

For each clause C = p(X1,...,Xk) :- b1, ..., b_m
Let θ be minimal such that p(X1,...,Xk)θ =

p(c1,...,ck)
subnetwork = constructNetworkForClause(C)
If subnetwork.evaluate() != 0

Connect subnetwork to node with the weight
specified for C in the program

EndIf
EndFor
Return node

Parameter learning:

Parameter learning is done by repeating the following steps:

1. Construct neural networks for every program H+e
i
 where H is a hypothesis e

i
 is a learning

example
2. Check if the stopping criterion is met and if so, finish.
3. Perform online backpropagation for a given number of steps for each of the networks
(updating the shared weights – note that the networks for different examples in the dataset
can be different but they share some weights).

References:
V. Aschenbrenner, (supervisor O. Kuzelka): Deep Relational Learning with Predicate Invention,
MSc Thesis, CTU in Prague, 2013

Acknowledgement:
Part of this work was done while VA and OK were with CTU in
Prague. OK is supported by Jan Ramon's ERC Starting Grant
240186 ’MiGraNT.

Some preliminary experiments:

Experiments were performed on chemical data. The
structure was selected so that the program would have
to induce soft clusterings of atom and bond types
relevant for the respective datasets.

w
toxic1

: toxic :- bond(A1,A2,B1), bond(A2,A3,B2),

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg2(B2).
w

toxic2
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2),

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg3(B2).
w

toxic3
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2),

atg1(A1), atg2(A2),atg3(A3), bg2(B1), bg3(B2).
…
...
w

atg11
: atg1(X) :- atm(X,carbon)

w
atg12

: atg1(X) :- atm(X,hydrogen)

w
atg13

: atg1(X) :- atm(X,nitrogen)

…
...
w

atg21
: atg2X) :- atm(X,carbon)

w
atg22

: atg2(X) :- atm(X,hydrogen)

w
atg23

: atg2(X) :- atm(X,nitrogen)

…
…
...quite large network!

Already with this simple model, we were able to obtain
competitive accuracies to nFOIL for PTC and
Mutagenesis.

Future work:

1. Experiments with datasets where the ability to
construct useful soft concepts (clusters) is expected to
be useful

2. Structure learning

3. Make it deep

What is this talk about?
• It is about a negative answer to a conjecture which

we had and which has consequences for bottom-up
learning in ILP.

• The negative answer strongly suggests optimality of
the notion of bounded least general generalization
[Kuželka, Szabóová & Železný, ILP’12]

Preliminaries

Homomorphism
• Homomorphism (= θ-subsumption)

• but also…

4

4

θ-subsumption
• Essentially the same “thing” as homomorphism…

• Clause A θ-subsumes clause B if there is a substitution θ
such that Aθ ⊆ B.

• Example:
• A = e(A,B) ⋁ e(B,C) ⋁ e(C,D) ⋁ e(D,E) ⋁ e(E,F) ⋁ e(F,A) ⋁ red(A)

⋁ e(B,A) ⋁ e(C,B) ⋁ e(D,C) ⋁ e(E,D) ⋁ e(F,E) ⋁ e(A,F)
• B = red(X) ⋁ e(X,Y) ⋁ e(Y,Z) ⋁ e(Z,X) ⋁ e(Y,X) ⋁ e(Z,Y) ⋁ e(X,Z)
• Then Aθ ⊆ B, θ = {A/X, B/Y, C/Z, D/Y, E/Z, F/Y}

4

Core (= θ-reduction)
• A graph G is a core if there is no smaller graph

homomorphically equivalent to it.

• θ-reduction of a clause C is a clause R which is θ-equivalent
to C and there is no smaller clause θ-equivalent to it.

• Deciding if a graph is a core is coNP-complete.

Plotkin’s Least General
Generalization (LGG)

• Clause C is an LGG of clauses A and B if C ⪯ A, C ⪯ B and, for any
clause D such that D ⪯ A, D ⪯ B, it holds D ⪯ C.

• LGG is used for learning (new hypotheses are created as LGGs of
examples).

• θ-reduction is used for reducing LGGs (θ-reduction of an LGG is still
an LGG).

• Corresponds to tensor products of graphs.

LGG(,) =

Bounded LGG
• Let X be a set of clauses. A clause B is said to be a bounded least general

generalization w.r.t. the set X of clauses A1, A2, . . . , An (denoted by B =
LGGX(A1,A2,...,An)) if and only if B ≼ Ai for all i ∈ {1,2,...,n} and if for every
other clause C ∈ X such that C ≼ Ai for all i ∈ {1,2,...,n}, it holds C ≼ B.

• It is a generalization/relaxation of conventional LGG

• Introduced in order to alleviate computational difficulties
related to intractability of θ-subsumtpion and θ-reduction

• It uses polynomial-time so-called bounded reduction
instead of θ-reduction

Bounded reduction

Bounded reduction

A Bit Inconvenient Property of Bounded LGG

• There are cases when:

• The set X has reasonable properties (e.g. X may consist of
bounded-size or bounded-treewidth clauses)

• A and B are clauses such that none of their bounded LGGs
belongs to the set X.

• (This does not affect any of the provable desirable properties of
bounded LGGs.)

LGG(,) =

On the other hand… LGGs of Forests

• If X is the set of directed forests, [Horváth, AIJ 2001]
notes that if A and B are from X then LGG(A,B) ∈ X as
well.

The Conjecture

LGG in a Set X
• A stronger variant of bounded LGG

• LGG in a set X, of clauses A and B from the set X is a clause
from the set LGGX(A,B) ∩ X.

Only defined for clauses from X!

It may also not exist.

Recall that LGGX(A,B) is a set.

(like bounded LGG, it does not have to be least general, but only in the set X)

The Conjecture

• LGG in a set X always exists if X is the set of
clauses of tree width at most k.

The conjecture holds for forests by Horvath’s result.

If true, it would imply mildly positive complexity results
for learning from bounded-treewidth clauses.

Results

What would not work…

• In order to prove that LGG in a set X does not
exist, it is not enough to show that (θ-reduction
of) LGG of some clauses from X is not from X.

• Example:
X = clauses with at most 3 literals
A = e(X, Y) ∨ e(Y, X)
B = e(X, Y) ∨ e(Y, Z) ∨ e(Z, X)
LGG(A, B) = e(X1, X2) ∨ e(X2, X3) ∨ e(X3, X4) ∨ e(X4, X5) ∨ e(X5, X6) ∨
e(X6, X1), thus LGG(A, B) ∩ X = ∅.
However, LGGin (A, B) = e(W,X)∨e(X,Y)∨e(Y,Z).

Example
A simpler illustrating result:

If n ≥ 4 then there is no LGG operator in the set X of clauses with at most n
atoms based on one binary predicate.

By enumerating all graphs with at most 4 edges, we can show that these two
graphs have no LGG in X.

The Negative Result
Theorem: There is no LGG operator in the set of clauses with treewidth 1.
Graphs used in the proof:

The problem is more difficult than on the previous slide because the set X is infinite in this case (so
enumeration would not help).
We can show that these two graphs have no LGG in the set of tree width 1 clauses.
Note: This does not contradict Horvath as our proof requires loops (which are forbidden in forests).

Conclusions
• We have provided a negative answer to a natural

question that someone would probably sooner or later
have to ask.

• Open questions:

• Are there interesting sets of clauses with LGG in set?

• Are there classes of clauses with bounded LGGs with slowly
growing sizes/treewidths?

