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A simple FOL-based neural network model – an example program:

1: brightTetrahedron(A,B,C,D) :- brightTriangle(A,B,C),  brightTriangle(A,B,D), 
brightTriangle(B,C,D), brightTriangle(A,C,D).
1: brightTriangle(X,Y,Z) :- bright(X), bright(Y), bright(Z), edge(X,Y), edge(Y,Z), edge(Z,X).
0.1: brightTriangle(X,Y,Z) :- bright(W), bright(X), bright(Y), bright(Z), edge(X,W), edge(W,Y), 
edge(Y,Z), edge(Z,X). /* A rectangle is almost a triangle too :) */
0.1: bright(blue).
1: bright(green).
2: bright(yellow).
2: bright(white).

Semantics:

1. Value of a ground fact is a parameter (the number on the left)
2. Output of a true ground Horn clause C = h :- b

1
,...,b

k
 is given as:

output(C)= sigmoid(value(b
1
)+...+value(b

k
)-k)

3. Output of a false ground clause is 0.
4. Value of a ground atom A with predicate h is given as follows:

- Let Cs ={C
1
,...,C

m
}be the set of all Horn clauses with h in the head.

- Let Gr(C
i
) denote the set of all true groundings of C

i
 with the ground atom A in the head.

- Then 
value(A) = sigmoid(w

C1 
max

C1 in Gr(C1)
output(C

1
)+...+w

Ck
 max

Ck in Gr(Ck)
output(C

k
)+w

0

A)

5. Value of an atom A is the maximum of the values of its groundings.

Examples of 'brightTetrahedrons(A,B,C,D)':
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Intuitively, we want 

this to hold.

This can be seen as a template for feed-forward neural networks.
The ground network can be constructed as follows from a logic program with weights and a 
query atom (in practice, we use an optimized algorithm which utilizes caching, branch-and-
bound, forward-checking etc., this is just for illustration):

Procedure constructNetworkForClause(C = h:-b
1
, …, b

k
)

best := NULL
'OuterLoop': For each grounding  θ of C

node := a neuron with no inputs and bias equal to -k
For i = 1, …, k

subnetwork = ConstructNetworkForAtom(bθ
i
)

If subnetwork == NULL Or subnetwork.evaluate() == 0
Continue to 'OuterLoop'

Else

Connect subnetwork to node (weight 1)
EndIf

EndFor

If node is better than best
best := node

EndIf
EndFor
Return best

Procedure constructNetworkForGroundAtom(a = 
p(c1,...,ck)

node := a neuron with no inputs and bias w
0

p

For each clause C = p(X1,...,Xk) :- b1, ..., b_m
Let θ be minimal such that p(X1,...,Xk)θ = 

p(c1,...,ck)
subnetwork = constructNetworkForClause(C)
If subnetwork.evaluate() != 0

Connect subnetwork to node with the weight 
specified for C in the program

EndIf
EndFor
Return node

Parameter learning:

Parameter learning is done by repeating the following steps:

1. Construct neural networks for every program H+e
i
 where H is a hypothesis e

i
 is a learning 

example
2. Check if the stopping criterion is met and if so, finish.
3. Perform online backpropagation for a given number of steps for each of the networks 
(updating the shared weights – note that the networks for different examples in the dataset 
can be different but they share some weights).
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Some preliminary experiments:

Experiments were performed on chemical data. The 
structure was selected so that the program would have 
to induce soft clusterings of atom and bond types 
relevant for the respective datasets.

w
toxic1

: toxic :- bond(A1,A2,B1), bond(A2,A3,B2), 

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg2(B2).
w

toxic2
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2), 

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg3(B2).
w

toxic3
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2), 

atg1(A1), atg2(A2),atg3(A3), bg2(B1), bg3(B2).
…
...
w

atg11
: atg1(X) :- atm(X,carbon)

w
atg12

: atg1(X) :- atm(X,hydrogen)

w
atg13

: atg1(X) :- atm(X,nitrogen)

…
...
w

atg21
: atg2X) :- atm(X,carbon)

w
atg22

: atg2(X) :- atm(X,hydrogen)

w
atg23

: atg2(X) :- atm(X,nitrogen)

…
…
...quite large network!

Already with this simple model, we were able to obtain 
competitive accuracies to nFOIL for PTC and 
Mutagenesis.

Future work:

1. Experiments with datasets where the ability to 
construct useful soft concepts (clusters) is expected to 
be useful

2. Structure learning

3. Make it deep
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What is this talk about?
• It is about a negative answer to a conjecture which 

we had and which has consequences for bottom-up 
learning in ILP. 

• The negative answer strongly suggests optimality of 
the notion of bounded least general generalization 
[Kuželka, Szabóová & Železný, ILP’12]



Preliminaries



Homomorphism
• Homomorphism (= θ-subsumption)

• but also…

4

4



θ-subsumption
• Essentially the same “thing” as homomorphism… 

• Clause A θ-subsumes clause B if there is a substitution θ 
such that Aθ ⊆ B. 

• Example:  
• A = e(A,B) ⋁ e(B,C) ⋁ e(C,D) ⋁ e(D,E) ⋁ e(E,F) ⋁ e(F,A) ⋁ red(A)     

⋁ e(B,A) ⋁ e(C,B) ⋁ e(D,C) ⋁ e(E,D) ⋁ e(F,E) ⋁ e(A,F) 
• B = red(X) ⋁ e(X,Y) ⋁ e(Y,Z) ⋁ e(Z,X) ⋁ e(Y,X) ⋁ e(Z,Y) ⋁ e(X,Z)  
• Then Aθ ⊆ B, θ = {A/X, B/Y, C/Z, D/Y, E/Z, F/Y}
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Core (= θ-reduction)
• A graph G is a core if there is no smaller graph 

homomorphically equivalent to it. 

• θ-reduction of a clause C is a clause R which is θ-equivalent 
to C and there is no smaller clause θ-equivalent to it. 

• Deciding if a graph is a core is coNP-complete.



Plotkin’s Least General 
Generalization (LGG)

• Clause C is an LGG of clauses A and B if C ⪯ A, C ⪯ B and, for any 
clause D such that D ⪯ A, D ⪯ B, it holds D ⪯ C. 

• LGG is used for learning (new hypotheses are created as LGGs of 
examples). 

• θ-reduction is used for reducing LGGs (θ-reduction of an LGG is still 
an LGG). 

• Corresponds to tensor products of graphs.

LGG(    ,     )   =



Bounded LGG
• Let X be a set of clauses. A clause B is said to be a bounded least general 

generalization w.r.t. the set X of clauses A1, A2, . . . , An (denoted by B = 
LGGX(A1,A2,...,An)) if and only if B ≼ Ai for all i ∈ {1,2,...,n} and if for every 
other clause C ∈ X such that C ≼ Ai for all i ∈ {1,2,...,n}, it holds C ≼ B. 

• It is a generalization/relaxation of conventional LGG

• Introduced in order to alleviate computational difficulties 
related to intractability of θ-subsumtpion and θ-reduction

• It uses polynomial-time so-called bounded reduction 
instead of θ-reduction

Bounded reduction

Bounded reduction



A Bit Inconvenient Property of Bounded LGG

• There are cases when:

• The set X has reasonable properties (e.g. X may consist of 
bounded-size or bounded-treewidth clauses) 

• A and B are clauses such that none of their bounded LGGs 
belongs to the set X. 

• (This does not affect any of the provable desirable properties of 
bounded LGGs.)



LGG(    ,     )   =

On the other hand… LGGs of Forests

• If X is the set of directed forests, [Horváth, AIJ 2001] 
notes that if A and B are from X then LGG(A,B) ∈ X as 
well.



The Conjecture



LGG in a Set X
• A stronger variant of bounded LGG

• LGG in a set X, of clauses A and B from the set X is a clause 
from the set LGGX(A,B) ∩ X.

Only defined for clauses from X!

It may also not exist.

Recall that LGGX(A,B) is a set.

(like bounded LGG, it does not have to be least general, but only in the set X)



The Conjecture

• LGG in a set X always exists if X is the set of 
clauses of tree width at most k.

The conjecture holds for forests by Horvath’s result.

If true, it would imply mildly positive complexity results 
for learning from bounded-treewidth clauses.



Results



What would not work…

• In order to prove that LGG in a set X does not 
exist, it is not enough to show that (θ-reduction 
of) LGG of some clauses from X is not from X. 

• Example:
X = clauses with at most 3 literals 
A = e(X, Y ) ∨ e(Y, X)  
B = e(X, Y ) ∨ e(Y, Z) ∨ e(Z, X) 
LGG(A, B) = e(X1, X2) ∨ e(X2, X3) ∨ e(X3, X4) ∨ e(X4, X5) ∨ e(X5, X6) ∨ 
e(X6, X1), thus LGG(A, B) ∩ X = ∅.  
However, LGGin (A, B) = e(W,X)∨e(X,Y)∨e(Y,Z). 



Example
A simpler illustrating result:

If n ≥ 4 then there is no LGG operator in the set X of clauses with at most n 
atoms based on one binary predicate.

By enumerating all graphs with at most 4 edges, we can show that these two 
graphs have no LGG in X.



The Negative Result
Theorem: There is no LGG operator in the set of clauses with treewidth 1.
Graphs used in the proof:

The problem is more difficult than on the previous slide because the set X is infinite in this case (so 
enumeration would not help).
We can show that these two graphs have no LGG in the set of tree width 1 clauses.
Note: This does not contradict Horvath as our proof requires loops (which are forbidden in forests).



Conclusions
• We have provided a negative answer to a natural 

question that someone would probably sooner or later 
have to ask. 

• Open questions:

• Are there interesting sets of clauses with LGG in set? 

• Are there classes of clauses with bounded LGGs with slowly 
growing sizes/treewidths?


