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Probabilistic Logics

@ Probabilistic logic models have successful application in a variety
of fields

@ However, inference and learning is expensive

@ Proposals such as Tractable Markov Logic [Domingos, Webb,
AAAI 2012], Tractable Probabilistic Knowledge Bases [Webb,
Domingos, StarAl 2013][Niepert, Domingos, StarAl 2014] and
fragments of probabilistic logics [van den Broeck, NIPS
2011][Niepert, van den Broeck, AAAI 2014] strive to achieve
tractability by limiting the form of sentences.

@ In ILP, the learning from interpretation settings [De Raedt,
Dzeroski, Al 1994][Blockeel et al, 1999] offers advantages in
terms of tractability: learning first-order clausal theories is
tractable [De Raedt, Dzeroski, Al 1994], examples in learning from
interpretations can be considered in isolation [Blockeel et al, 1@99]
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Objectives

@ Inductive Constraint Logic (ICL) [De Raedt, Van Laer, ALT 1995]:
performs discriminative learning from interpretations

@ Models are sets of integrity constraints

@ We want to consider a probabilistic version of the sets of integrity
constraints with a semantics in the style of the distribution
semantics [Sato, ICLP 1995]

@ Each integrity constraint is annotated with a probability and a
model assigns a probability of being positive to interpretations

@ This probability can be computed in linear time given the number
of groundings of the constraints.
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ICL

@ ICL [De Raedt, Van Laer, ALT 1995] performs discriminative
learning from interpretations
@ Constraint Logic Theory: a set of Integrity Constraints of the form

L1,...,Lb—>A1;...;Ah (1)

B: a background knowledge

@ A CLT T classifies an interpretation / as positive given a
background knowledge Bif M(BUl) =T

@ range-restricted clause: all the variables that appear in the head
also appear in the body.

o If T is range-restricted, M(BU I) = T can be tested by asking the
goal

? — Body(C),—~Head(C).

against a Prolog database containing / and B. If the query fails, C
is true in / given B, otherwise C is false in / given B. ) e
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ICL

Example: Bongard Problems

@ Discriminate between positive and negative pictures containg

geometric shapes.
| B | T
B I e v
o O =
[

@ Each picture can be described by an interpretation

Iy = {triangle(0), large(0), square(1), small(1), inside(1,0), (2)
triangle(2), inside(2,1)}  (3)

in(A, B) <« inside(A, B).

in(A, D) <« inside(A, C),in(C, D).

e M(BU ) 2 {in(1,0),in(2,1),in(2,0)}

© Cy = triangle(T), square(S), in(T, S) — false is false in /; given B

@ In the central picture instead Cj is true given B ) i
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ICL

@ ICL uses a covering loop on the negative examples
@ It starts from an empty theory and adds one IC at a time

@ After the addition of the IC, the set of negative examples that are
ruled out by the IC are removed from the overall set of negative
examples

@ The loop ends when no more ICs can be generated or when the
set of negative examples becomes empty

@ The IC to be added is found by beam search with P(S|C) as the
heuristic function (the precision on negative examples)
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Probabilistic Inductive Constraint Logic

Probabilistic Constraint Logic

@ A Probabilistic Constraint Logic Theory (PCLT) is a set of
probabilistic integrity constraints (PICs)

pi L1,...,Lb—>A1;...;Ah (4)

@ A PCLT T defines a probability distribution on ground constraint
logic theories called worlds: for each grounding of each IC, we
include the IC in a world with probability p; and we assume all
groundings to be independent

@ Constraint C; has n; groundings called Ciy, ..., Cjy,.
@ The probability of a world w is given by the product:

n

P(w) = HCH picl-;l (1-pi).
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Probabilistic Constraint Logic

@ The probability P(®|w, I) of the positive class given an
interpretation /, a background knowledge B and a world w is 1 if
M(BU I) = w and 0 otherwise.

@ The probability P(®|/) of the positive class given an interpretation
I and a background B is the probability of a PCLT T satisfying /

@ P(a|l) is given by

P@l) = > P@,wll)= > P@lwPwl)= (5)

weW weW

> Pw) (6)
weW,M(BUl)E=w
P(ell) =1 — P(e])). .
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Probabilistic Inductive Constraint Logic

Probabilistic Constraint Logic

@ There is an exponential number of worlds

@ We can associate a Boolean random variable Xj to each
instantiated constraint C;. Let X be the set of the Xj; variables.
These variables are all mutually independent

@ We must keep only the worlds where Xj; holds for all ground
constraints Cj; violated in /.

@ / satisfies all the worlds where the formula

o=A A %

i=1 M(BUI)}-C;

is true N
P(ell) = P(¢) = TJ(1 —p)™ (7)
i=1
where m; is the number of instantiations of C; that are not sati%ﬁglw
|n / BEAR
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Probabilistic Inductive Constraint Logic

Example: Bongard Problems

@ Consider the PCLT
{Cy =0.5 :: triangle(T), square(S),in(T,S) — false}

@ In the left picture the body of C; is true for the single substitution
T/2 and S/1 thus my =1 and P(&|/;) = 0.5.

@ In the right picture the body of C; is true for three couples
(triangle, square) thus my = 3 and P(®|l,) = 0.125.

ol [7]
o <

O >
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Learning Probabilistic Constraint Logic Theories

Learning Probabilistic Constraint Logic Theories

Given
@ asetZt ={h,..., g} of positive interpretations
@ asetZ™ ={lq.1,...,Ig} of negative interpretations

@ a normal logic program B (background knowledge)
Find: a PCLT T such that the Iikelihood

L= HP@Hq H P(o|lr)

r=Q+1

is maximized.
The likelihood can be unfolded to

Q n R n
L=TTII0-p)™ ]I (1 -[1a —P/)m”> (8)

q=11=1 r=Q+1 =1

where mj,; (m;) is the number of instantiations of C; that are false mlq
(I)) and nis the number of ICs. Ll
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Learning Probabilistic Constraint Logic Theories

Parameter Learning

@ Let us compute the derivative of the likelihood with respect to the
parameter p;

oL L A P(a|l))
o~ T-p (,Z ’""’P(@/r)’""*) ©

=Q+1

@ where m;, = 25:1 Mig
@ The equation (%i = 0 does not admit a closed form solution so we
must use optimization to find the maximum of L

@ We can optimize the likelihood with Limited-memory BFGS
(L-BFGS) [Nocedal, MathComp 1980]

@ L-BFGS requires the computation of L and of its derivative at
various points. VT
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Learning Probabilistic Constraint Logic Theories

Structure Learning

@ First search for good candidate ICs, then search for a theory
guided by the LL of the data

@ Search for ICs: bottom-up beam search. The revisions are scored
by the log likelihood (LL) resulting from parameter learning

@ The refinement operator adds literals from a top IC obtained by
saturation as in Progol using mode declarations

@ A fixed-size list with the best ICs found so far is kept
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Learning Probabilistic Constraint Logic Theories

Structure Learning

@ Seach for a theory: greedy search in the space of theories by
iteratively adding an IC CI from the list of best clauses ordered by
LL

@ The IC is kept if the log likelihood LL after parameter learning
improves
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Related Work

@ Similarity with the distribution semantics

@ Inference in the DS is #P in the number of variables

@ On the contrary, computing the probability of the positive class
given an interpretation in a PCLT is linear in the number of
variables.

@ 1BC [Flach, Lachiche, ML 2004] induces first-order features in the
form of conjunctions of literals and combines them using naive
Bayes in order to classify examples

@ First-order features are similar to integrity constraints with an
empty head

@ The probability of a feature is computed by relative frequency in
1BC

@ This can lead to suboptimal results if compared to PASCAL,
where the probabilities are optimized to maximize the likelihodigh

Riguzzi et al. (UNIFE) PASCAL ILP 2015 15/19



Experiments

(*]
(]

PASCAL has been implemented in SWI-Prolog

For performing L-BFGS we ported the YAP-LBFGS library
developed by Bernd Gutmann to SWI-Prolog. This library is based
on libLBFGS.

Hardware: machines with an Intel Xeon Haswell E5-2630 v3
(2.40GHz) CPU and 128 GB RAM

Comparison with DPML [Lamma et al, ILP 2007] (similar to ICL)

Process mining dataset [Bellodi et al, KSEM 2010]: careers of
students enrolled at the University of Ferrara

776 interpretations each corresponding to a different student

career

Students who graduated: positive interpretations; student who did
not finish their studies: negative interpretations &
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Experiments

@ Five-fold cross validation

System LL AUCROC AUCPR Accuracy Time(s)
PASCAL -302.664 0.923 0.851 0.889  568.509
DPML -440.254 0.707 0.53 0.656  280.594
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Conclusions and Future Work

@ Conclusions
o Tractable inference
o Parameter optimization by L-BFGS
e Good initial results

@ Future work

o Test on more datasets
o Distributed learning
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