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Motivation

Probabilistic Logics

Probabilistic logic models have successful application in a variety
of fields
However, inference and learning is expensive
Proposals such as Tractable Markov Logic [Domingos, Webb,
AAAI 2012], Tractable Probabilistic Knowledge Bases [Webb,
Domingos, StarAI 2013][Niepert, Domingos, StarAI 2014] and
fragments of probabilistic logics [van den Broeck, NIPS
2011][Niepert, van den Broeck, AAAI 2014] strive to achieve
tractability by limiting the form of sentences.
In ILP, the learning from interpretation settings [De Raedt,
Dzeroski, AI 1994][Blockeel et al, 1999] offers advantages in
terms of tractability: learning first-order clausal theories is
tractable [De Raedt, Dzeroski, AI 1994], examples in learning from
interpretations can be considered in isolation [Blockeel et al, 1999]
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Motivation

Objectives

Inductive Constraint Logic (ICL) [De Raedt, Van Laer, ALT 1995]:
performs discriminative learning from interpretations
Models are sets of integrity constraints
We want to consider a probabilistic version of the sets of integrity
constraints with a semantics in the style of the distribution
semantics [Sato, ICLP 1995]
Each integrity constraint is annotated with a probability and a
model assigns a probability of being positive to interpretations
This probability can be computed in linear time given the number
of groundings of the constraints.
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ICL

ICL

ICL [De Raedt, Van Laer, ALT 1995] performs discriminative
learning from interpretations
Constraint Logic Theory: a set of Integrity Constraints of the form

L1, . . . ,Lb → A1; . . . ;Ah (1)

B: a background knowledge
A CLT T classifies an interpretation I as positive given a
background knowledge B if M(B ∪ I) |= T
range-restricted clause: all the variables that appear in the head
also appear in the body.
If T is range-restricted, M(B ∪ I) |= T can be tested by asking the
goal

?− Body(C),¬Head(C).

against a Prolog database containing I and B. If the query fails, C
is true in I given B, otherwise C is false in I given B.
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ICL

Example: Bongard Problems

Discriminate between positive and negative pictures containg
geometric shapes.
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Each picture can be described by an interpretation

Il = {triangle(0), large(0), square(1), small(1), inside(1,0), (2)
triangle(2), inside(2,1)} (3)

B =
in(A,B) ← inside(A,B).
in(A,D) ← inside(A,C), in(C,D).

M(B ∪ Il) ⊇ {in(1,0), in(2,1), in(2,0)}
C1 = triangle(T ), square(S), in(T ,S)→ false is false in Il given B
In the central picture instead C1 is true given B
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ICL

ICL

ICL uses a covering loop on the negative examples
It starts from an empty theory and adds one IC at a time
After the addition of the IC, the set of negative examples that are
ruled out by the IC are removed from the overall set of negative
examples
The loop ends when no more ICs can be generated or when the
set of negative examples becomes empty
The IC to be added is found by beam search with P(	|C) as the
heuristic function (the precision on negative examples)
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Probabilistic Inductive Constraint Logic

Probabilistic Constraint Logic

A Probabilistic Constraint Logic Theory (PCLT) is a set of
probabilistic integrity constraints (PICs)

pi :: L1, . . . ,Lb → A1; . . . ;Ah (4)

A PCLT T defines a probability distribution on ground constraint
logic theories called worlds: for each grounding of each IC, we
include the IC in a world with probability pi and we assume all
groundings to be independent
Constraint Ci has ni groundings called Ci1, . . . ,Cini .
The probability of a world w is given by the product:

P(w) =
n∏

i=1

∏
Cij∈w

pi

∏
Cij 6∈w

(1− pi).

Riguzzi et al. (UNIFE) PASCAL ILP 2015 7 / 19



Probabilistic Inductive Constraint Logic

Probabilistic Constraint Logic

The probability P(⊕|w , I) of the positive class given an
interpretation I, a background knowledge B and a world w is 1 if
M(B ∪ I) |= w and 0 otherwise.
The probability P(⊕|I) of the positive class given an interpretation
I and a background B is the probability of a PCLT T satisfying I
P(⊕|I) is given by

P(⊕|I) =
∑

w∈W

P(⊕,w |I) =
∑

w∈W

P(⊕|w , I)P(w |I) = (5)∑
w∈W ,M(B∪I)|=w

P(w) (6)

P(	|I) = 1− P(⊕|I).
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Probabilistic Inductive Constraint Logic

Probabilistic Constraint Logic

There is an exponential number of worlds
We can associate a Boolean random variable Xij to each
instantiated constraint Cij . Let X be the set of the Xij variables.
These variables are all mutually independent
We must keep only the worlds where Xij holds for all ground
constraints Cij violated in I.
I satisfies all the worlds where the formula

φ =
n∧

i=1

∧
M(B∪I) 6|=Cij

Xij

is true

P(⊕|I) = P(φ) =
n∏

i=1

(1− pi)
mi (7)

where mi is the number of instantiations of Ci that are not satisfied
in I
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Probabilistic Inductive Constraint Logic

Example: Bongard Problems
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Consider the PCLT
{C1 = 0.5 :: triangle(T ), square(S), in(T ,S)→ false}
In the left picture the body of C1 is true for the single substitution
T/2 and S/1 thus m1 = 1 and P(⊕|Il) = 0.5.
In the right picture the body of C1 is true for three couples
(triangle, square) thus m1 = 3 and P(⊕|Ir ) = 0.125.
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Learning Probabilistic Constraint Logic Theories

Learning Probabilistic Constraint Logic Theories

Given
a set I+ = {I1, . . . , IQ} of positive interpretations
a set I− = {IQ+1, . . . , IR} of negative interpretations
a normal logic program B (background knowledge)

Find: a PCLT T such that the likelihood

L =
Q∏

q=1

P(⊕|Iq)
R∏

r=Q+1

P(	|Ir )

is maximized.
The likelihood can be unfolded to

L =
Q∏

q=1

n∏
l=1

(1− pl)
mlq

R∏
r=Q+1

(
1−

n∏
l=1

(1− pl)
mlr

)
(8)

where miq (mir ) is the number of instantiations of Ci that are false in Iq
(Ir ) and n is the number of ICs.
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Learning Probabilistic Constraint Logic Theories

Parameter Learning

Let us compute the derivative of the likelihood with respect to the
parameter pi

∂L
∂pi

=
L

1− pi

 R∑
r=Q+1

mir
P(⊕|Ir )
P(	|Ir )

−mi+

 (9)

where mi+ =
∑Q

q=1 miq

The equation ∂L
∂pi

= 0 does not admit a closed form solution so we
must use optimization to find the maximum of L
We can optimize the likelihood with Limited-memory BFGS
(L-BFGS) [Nocedal, MathComp 1980]
L-BFGS requires the computation of L and of its derivative at
various points.

Riguzzi et al. (UNIFE) PASCAL ILP 2015 12 / 19



Learning Probabilistic Constraint Logic Theories

Structure Learning

First search for good candidate ICs, then search for a theory
guided by the LL of the data
Search for ICs: bottom-up beam search. The revisions are scored
by the log likelihood (LL) resulting from parameter learning
The refinement operator adds literals from a top IC obtained by
saturation as in Progol using mode declarations
A fixed-size list with the best ICs found so far is kept
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Learning Probabilistic Constraint Logic Theories

Structure Learning

Seach for a theory: greedy search in the space of theories by
iteratively adding an IC Cl from the list of best clauses ordered by
LL
The IC is kept if the log likelihood LL after parameter learning
improves
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Related Work

Related Work

Similarity with the distribution semantics
Inference in the DS is #P in the number of variables
On the contrary, computing the probability of the positive class
given an interpretation in a PCLT is linear in the number of
variables.
1BC [Flach, Lachiche, ML 2004] induces first-order features in the
form of conjunctions of literals and combines them using naive
Bayes in order to classify examples
First-order features are similar to integrity constraints with an
empty head
The probability of a feature is computed by relative frequency in
1BC
This can lead to suboptimal results if compared to PASCAL,
where the probabilities are optimized to maximize the likelihood.
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Experiments

Experiments

PASCAL has been implemented in SWI-Prolog
For performing L-BFGS we ported the YAP-LBFGS library
developed by Bernd Gutmann to SWI-Prolog. This library is based
on libLBFGS.
Hardware: machines with an Intel Xeon Haswell E5-2630 v3
(2.40GHz) CPU and 128 GB RAM
Comparison with DPML [Lamma et al, ILP 2007] (similar to ICL)
Process mining dataset [Bellodi et al, KSEM 2010]: careers of
students enrolled at the University of Ferrara
776 interpretations each corresponding to a different student
career
Students who graduated: positive interpretations; student who did
not finish their studies: negative interpretations
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Experiments

Experiments

Five-fold cross validation

System LL AUCROC AUCPR Accuracy Time(s)
PASCAL -302.664 0.923 0.851 0.889 568.509
DPML -440.254 0.707 0.53 0.656 280.594
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Experiments

Conclusions and Future Work

Conclusions
Tractable inference
Parameter optimization by L-BFGS
Good initial results

Future work
Test on more datasets
Distributed learning
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Experiments
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