| KU LEUVEN

KProlog

an algebraic Prolog for kernel
programming
Francesco Orsini

Paolo Frasconi
Luc De Raedt

L
o
. e
‘e
=+ DTAI
e ®
a .‘.
a DECLARATIVE LANCUAGES &
ARTIFICIAL INTELLIGENCE

Outline

Motivation
KProlog

— Algebraic T'»-operator
— Tensor operations

KProlog

— Algebraic T'»-operator with meta-functions
— Cyclic programs

kProlog ~*
— Graph kernels

Conclusions

e Motivation

— Algebraic T'»-operator
— Tensor operations

e kProlog

— Algebraic T'»-operator with meta-functions
— Cyclic programs

e kProlog
— Graph kernels

e Conclusions

We want to design an algebraic Prolog
for learning with linear separators.

Linear separators Prolog

Which Prolog

*
Y % program should
* X | write?

We want to design an algebraic Prolog
for learning with linear separators.

Linear separators Prolog
/2/@,«07
O;/'b& (9'02'0
/7&9/'0 6{96
“a,’e Which Prolog
program should

| write?

Motivation

Probabilistic
programming

Learning
with kernels

Kernel
programming

Short
description

ProbLog facts are labeled
& J X X and labels are
combined using
PRISM logic
grounds logic to
a graph, calls an
kLOg X J X external graph
kernel
fact labels
capture the
kKProlog J J J kernel, logic

allows to program
the kernel

e Motivation

. kPrdIog |

— Algebraic T'»-operator

— Tensor operatlons

o kProIog

— Algebraic T'»-operator with meta-functions
— Cyclic programs

e kProlog
— Graph kernels

e Conclusions

KProlog

In kKProlog~ facts are labelea
with elements.

KProlog

In kKProlog~ facts are labelea
with elements.

Sounds like algebraic ProblLog
without disjoint sums.

KProlog

A kProlog~ program P is a 4-tuple (F', R, 5, /) where:
e /'Is a finite set of facts,
e /7 Is a finite set of definite clauses (also called rules),

e 5 IS a semiring with sum < and product
operations, whose neutral elements are (5 and
respectively.

e /: I — 5 is a function that maps facts
to semiring values.

10

Algebraic interpretation

An algebraic interpretation 7, = (7,)

of a ground kProlog~ program P = (F, R, 5, /)
s a set of tuples (a, w(a))
where:

e ¢ IS an atom in the Herbrand base A

e w(a) is an algebraic formula over
the fact labels {/(f)|f € F'}.

11

Algebraic T'p-operator

Let P = (F, R,5,/) be a ground algebraic logic program
with Herbrand base A.

Let /., = (I, w) be an algebraic interpretation

with pairs (a, w(a)).

Then the T(p gy-operatoris T p «y(/..) = {(a,w'(a))|a € A}
where:

(a) ifa € I
(a) = {b1,pntct Qiziw(bs) fae ANE -

12

Algebralc T'p-operator

logic

| Tr--operator |

example
(a) =0.5 w(b)=0.3
(c) =0.9

J J
I I‘\
| i
i 1;

0.5x0.3

Tensor operations

- n-ary predicate a/n represents n-mode tensor.

-+ a ground atom a(dy, ...d,) represents n-mode tensor.

- dy,...,d, are elements of the Herbrand universe
and are the indices that identify a cell.

\
\

A
|§\>
I&IL
N
.

e
R
—
e
A L

i
8.
\
£\
A\
R
\

Vectors and
matrices are
particular cases

R
I=iE
=_§!!
Y
R
BV

\

of 1-mode and
2-mode tensors
respectively.

“igipip

lensor operations

algebra kProlog
N D *1*—:__ decla&%a(/2 FZ;;?)‘W i
A = L2 1::a(0, 0).
03 2::a(0, 1).
3:ra(l, 1).
:— declare(b/2, int).
B 2 1 2::b(0, 0).
B = 5 1 1::b(0, 1).
) 5::b(1, 0).
1::b(1, 1).

15

lensor operations

algebra kProIog example
transpose M C(I, J) = 121t _ 110
I a(]. 1), 3] =[39]
C (I % -
sum a(Ia J) [12] [21]_[33]
A—|—B C(I, J) . 03 511 7 L54
b(l, J)

Hadamard product (1, j) :—
(element-wise product) a(l, J), [b2]o[E1] =153]

AGB b(I, J).

lensor operations

algebra kProlog example

matxproduct o, B3I =183

AB b () 7).

A B C

Kronecker c(i(la, Ib), j(Ja, Jb)):—
product a(la, Ja), b(Ib, Jb).
A ® B | - Thelaiggiscce)fs fﬁLg’:%;es?ilé ?r:i f(or?npeocukne(: :aer[)rgﬁct can not be naturally.
example

1 2'@'2 1] [1[21] 2[21]] 10
O3y s 1) 0fEal 3l5)

18

e Motivation
e kProlog

— Algebraic T'»-operator
— Tensor operations

f. kPrdIog

— Algebraic T'»-operator with meta-functions

— Graph kernels

e Conclusions
19

KProlog

kProlog overcomes the limitations of kProlog™.

We introduce:
e multiple In the same program,

o and meta-clauses to overcome
the limits imposed by the
sum - and product ¢ operations.

20

KProlog:

A meta-function m: 57 x ... X — 5" 1s a function
that maps m semiring values », € 5,, 1 =1,...,k

to a value of type 5', where 5,,..., 5, and 5’ can be
distinct semirings.

Leta_1,...,a_k be algebraic atoms, the syntax

expresses that the meta-function @m is applied to the
semiring values of the atoms a_1,...,a_k.

21

KProlog: meta-functions

m R x /Z — R
real —>.
—> real
integer ——»

m o (x,y) — ysin(x)

KProlog: meta-clauses

In the kProlog language a meta-clause
h :- b_1,...,b_n.

IS a universally quantified expression where:
e his an atom

e b_1,...,b_n can be either:
— body atoms or
— applied to other atoms.

For a given meta-clause, if the head is labeled with
the , also the labels of the body atoms
and the return types of the must be
on the

23

KProlog: meta-clauses

— @S|n[c]4—7

meta-clause

KProlog: program

A kProlog program £ Is a
union of kProlog* programs
and meta-clauses.

Algebraic T'p-operator
with meta-clauses

Let P be meta-transformed kProlog program
with facts /' and atoms A.

Let /., = ([,

with pairs (a, w(a)).
Then the T'»-operatoris Tp(1.,) = {(a,w' (a))|a € A}

where:

w'(a) = {w’CLAUSE(a)@w/META(@)
D (61,005 }CI®Z 1 0(b

a. bl,.

w/CLAUSE(a) —

t(a)

wlMETA (CL) — E

0-’

w) be an algebraic interpretation

ifa € F
ifae A\ F

The same as in
kProlog”

Contribute from the
meta-functions.

9 101501, b }CI m(w(b1)77w(bk)

,,,,,

Algebraic T'p-operator

with meta clauses
logic TP operator | 1 (a)=0.5

e Motivation
e kProlog

— Algebraic T'»-operator
— Tensor operatlons

o kProIog

- Algebralc Tp-operator with meta-functions

— Graph kernels

e Conclusions
28

Cyclic programs

29

Evaluation of kProlog programs

e meta-transformation (P ~ P) Yy s
Q/Gy Ge/&
e grounding (P ~ ground(P)) %/5
9
e partitioning in strata v

(ground(P) ~» {P1,..., Py} where ground(P) = J;_, ;)

e Visit the strata sequentially 774, ..., P,: T—
- declare(<pred.>/<n>, < >).
ate-type>).

O for reaCh Stratum P,L .- declare(<pred.>/<n>, < >, <upd
— If is acyclic apply the algebraic T'»-operator once. N\
— If is cyclic apply the algebraic T'»-operator: VS
+ for the acyclic rules only once. updates

x for the cyclic rules until convergence of the weights.

30

FOR LANGUAGE LAWYERS

Evaluation of kProlog programs

P1, ..., P_.n = scc(ground(P)) // find the strongly connected components

// in the ground program
m = topsort (STRATA) // find a permutation that sorts
// the strata in topological order
for £ in F
// initialise w(f) to the
// weight of the fact f
end

for i in =«

w(a) := 0_s V a € P_i \ F
w_old := w
for rule in NREC(P_i) - declare(<pred.>/<n>, <sem.>).
h = head(rule) VS
w(h) := w(h) + T_(P_i, w_old) (rule) .- declare(<pred.>/<n>, <sem.>, <update-type>).
end
w_old := w
while w_old !'= w

Aw(head(rule)) = 0_s V rule &€ REC(S)
for rule in REC(P_1i)

h = head(rule)

Aw(h) += T_(P_i, w_old)(rule)
end

VS
destructive
updates

for rule in REC(S)
if rule is additive

w(head (rule)) := w_old(head(rule)) + Aw(head(rule))
else // rule is destructive
w(head(rule)) := Aw(head(rule))
end
end
end

end 31

Cyclic programs

meta-function definition
QR%R g(m):x(l—x) o 02 04 06 08 1\ 1.2]

we want to compute:
lim ¢"(xqg), where xg = 0.5

n—oo

¢ (z0) = @ Cobweb Plot Solution

g™ (zg) = Sg ®...07g)(xp)

function
composition

n times

iImages generated with:
http://mathinsight.org/applet/function_iteration_cobweb_combined

32

http://mathinsight.org/applet/function_iteration_cobweb_combined

Cycllc programs
:— declare(x, real, |[destructive}

:— declare (XO, real).

meta-function definition

.9 ::x0. g:R—R

X :— Qg [x]. while w(x) !'= w°'9(x)

w(x) := w(x0)
STRATUM 2 x = x0. wold .=

. 1N Aw(x) := g(wOld(X))
destructive = A (%)
end

33

e Motivation
e kProlog

— Algebraic T'»-operator
— Tensor operations

e kProlog

— Algebraic T'»-operator with meta-functions
— Cyclic programs

e kProlog 5

‘ kernels ‘

e —— _ —— — —— — — — — __ ——

e Conclusions
34

kProlog” %!

multivariate polynomials
(0]
feature extraction

Graph kernels
k(GG = (2(G), 2(C)

inner-product -
in the feature space

High-dimensional
B feature vectors.

36

Representing the
structure of a machine
learning problem

domain machine
framework .
structure learning
conv. kernels on
discrete data graph kernel
structures
KProlog logic program | algebraic labels

meta-clauses

meta-functions

37

kProlog” %!

some relevant operations

sum
compress

dot product

38

kProlog” %!

semiring sum = feature addition

r
®0
O
. ‘ 2 wgreen""
_ 3 * L'magenta
r
O
o0
O
\

Lorange

39

DO DO O DO

*x X X X

Il.

xgreen+

xmagenta—l_
xsky_|_
xcyan"‘

Lorange

kProlog” %!

@id function = feature compression
[‘] 1*xgray_>@id_>@ 1*379?6677,

[‘ ‘] 2 % Lgray — @Q|d—> @ 1 % Lmagenta

[‘) 1 Tmagenta > @ld— @ 1 % Lsky

] 1 % wma,genta"_

® o
1 % $g?“een

><@|d> @ 1 % $cyan

[. ‘J 2 % L'magenta — @|d —> @ 2 % Lorange

analogous of the 1 function in [Shervashidze et al. (2011)]

kProlog” %!

@dot product

example

1 xx +
[. ’] 1*37g7°een \
@dot—1x0+1x2=2
(@ @) 2x= 4

41

Weisfteiler-Lehman algorithm

f

\

Recoloring step

U]
(ma

LL)

]

l

New colors

mm>2 (m|>m

J

£(v)

42

(a.k.a. color refinement)

LY (w)w € N(v)})

it h =20
it h >0

Recoloring step

m o

Lt

@)
@ \

CL]

New colors

—> @—».

mE-=

Weisteller-Lehman graph kernel

-
| >
|
' .
.

polynomials to represent

WL base
features

phi(0, graph_a)

I I featu re

T‘ ph1(1 graph a)
phi(2, graph a)

graph labels = s e — e —
:— declare(vertex/2, polynomial(int)).| edge.asymm(graph.a, 1, 2).
:— declare (edge_.asymm/3, boolean). edge_asymm(graph_a, 2, 3).
:— declare(edge/3, polynomial(int)). edge_.asymm(graph_a, 3, 4).
edge_asymm(graph_a, 4, 5).
1 % x(gray)::vertex(graph_a, 1).
1 % x(gray)::vertex(graph_a, 2). 1.0::edge(Graph, A, B):—
1 % x(gray)::vertex(graph_a, 3). edge_ asymm(Graph A, B).
1 % x(gray)::vertex(graph_.a, 4).
1 % x(gray)::vertex(graph_a, 5). 1.0::edge(Graph, A, B):—

edge_asymm (Graph, B, A).
43

Weisfeiler-Lehman graph kernel

WL

|WL base
{ features

I I feature

T ph1(1 graph a)
phi(0, graph_a) phi(2, graph a)

:— declare(wl_color/3, wl_color (0, Graph, V):—
polynomial (int)). vertex (Graph, V).
:— declare(wl_color_multiset/3,
polynomial(int)). wl_color (H, Graph, V):—
H> 0,
wl_color_multiset (H, Graph, V):— H1 is H- 1,
edge (Graph, V, W), @id[wl_color_multiset (H1, Graph, V)].

wl_color (H, Graph W).
< polynomials represent C @id meta-function
multisets of labels for recoloring

44

Weisfeiler-Lehman graph kernel

1
|

WL base

features
4+ phi(1, graph_a) 0

phi(0, graph_a) phi(2, graph_a)

:— declare(phi/2, real). :— declare(base_kernel/3, real).

phi(H, Graph):— base_kernel (H, Graph, GraphPrime):—
wl_color (H, Graph, V). @dot[phi (H, Graph),

\ phi(H, GraphPrime)].

. the base kernel H
explicit feature vector)
: : is the dot product
at iteration H .
between explicit feature

vector at iteration H

45

Weisfeiler-Lehman graph kernel

WL base
features

WL
wfeatu re

'T ph1(1 graph a) 0

phi(0, graph_a)

phi(2, graph_a)

:— declare(kernel_wl/3, real).

kernel_wl (0, Graph, GraphPrime):—
base_kernel (0, Graph,

accumulate base-kernels

of successive iterations

GraphPrime).

kernel_wl (H, Graph,
H> 0, HI
kernel_wl (H1,

GraphPrime): —
s H—- 1,
Graph, GraphPrime).
kernel_wl (H, Graph,
H> 0,
base_kernel (H, Graph,

GraphPrime): —

GraphPrime).

M

46

Graph kernels
k(GG = (2(G), 2(C)

inner-product -
in the feature space

High-dimensional
B feature vectors.

47

Graph Kernels with
continuous attributes
k(G,G) = (2(G), ®(G))

inner-product)
in the feature space

High-dimensional
@ feature vectors.

High-dimensional
vertex attributes.

48

Graph kernels with
continuous attributes

see the ILP2015 paper for details

Motivation
KProlog

— Algebraic T'»-operator
— Tensor operations

KProlog

— Algebraic T'»-operator with meta-functions
— Cyclic programs

kProlog ~*

— Graph kernels

Novelty related work (1)

ProblLog: probabilistic programming.
- Facts labeled with probabilities.
+ Probabilistic Weighted Model Counting.

ProblLog: algebraic generalization of ProblLog.
- Facts labeled with elements of a semiring.
- Algebraic Weighted Model Counting.

kProlog can handle multiple semirings.

- Facts labeled with semiring elements.

- Multiple semirings in the same kProlog program.

- Algebraic Weighted Model Counting is optional
(i.e. using the SDD and the BDD semiring).

51

Novelty related work (2)

kLog: learning with kernels.

- knowledge-based model construction.
graphicalization declarative specification of graphs.
can not specify new kernels in the language, allows to

plug external graph kernels.

kFOIL: variation of FOIL for learning with kernels.

can learn simple kernels.
- the kernel defined as the number of clauses that fire in

both the interpretations.

kProlog: can declaratively specify kernel features.
introduction of polynomials for explicit feature extraction.

52

Conclusions

e kProlog is an algebraic Prolog, and can be used to specity
feature spaces and learn with linear separators.

e kProlog is a language that provides a uniform
representation for:

— relational data,
— background knowledge,
— kernel design.

o and allow to specify in kProlog
many recent graph kernels.

53

Future work ' /&

More declarative specifications of &
existing graph kernels:

- rational kernels
- shortest path kernels

Kernels on probability distributions |

(SDD semiring to mimic ProbLog):
- probability product kernels
- Fisher kernel.

54

Thank you for your
attention.

;. Questions ?

56

References

(1] L De Raedt, A Kimmig, and H Toivonen. Problog: A probabilistic prolog and its
application in link discovery. In [JCAI, 2007.

2] J Eisner and N W Filardo. Dyna: Extending datalog for modern ai. In Datalog
Reloaded. Springer, 2011.

(3] Javier Esparza and Michael Luttenberger. Solving xed-point equations by derivation
tree analysis. In Algebra and Coalgebra in Computer Science. Springer, 2011.

4] Javier Esparza, Stefan Kiefer, and Michael Luttenberger. An extension of newtons
method to omega-continuous semirings. In Developments in Language Theory. Springer,
2007.

[5] J Esparza, M Luttenberger, and M Schlund. Fpsolve: A generic solver for fixpoint
eqguations over semirings. In Implementation and Application of Automata. Springer,
2014,

[6] P Frasconi, F Costa, L De Raedt, and K De Grave. klog: A language for logical and
relational learning with kernels. Artificial Intelligence, 2014.

[7] Todd J Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. In
Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. ACM, 2007.

[8] M Kim and K S Candan. Approximate tensor decomposition within a tensor relational
algebraic framework. In Proceedings of the 20th ACM international conference on
Information and knowledge management. ACM, 2011.

9] A Kimmig, G Van den Broeck, and L De Raedt. An algebraic prolog for reasoning
about possible worlds. In 25th AAAI Conference on Artificial Intelligence, 2011.

57

References

[10] N Landwehr, A Passerini, L De Raedt, and P Frasconi. kfoil: Learning simple
relational kernels. In AAAI, 2006.

[11] Daniel J Lehmann. Algebraic structures for transitive closure. Theoretical Computer
Science, 1977.

[12] M Neumann, N Patricia, R Garnett, and K Kersting. Efficient graph kernels by
randomization. In Machine Learning and Knowledge Discovery in Databases. Springer,
2012.

[13] F Orsini, P Frasconi, and L De Raedt. Graph invariant kernels. In Proceedings of the
24th [JCAI, 2015.

[14] M Richardson and P Domingos. Markov logic networks. Machine learning, 2006.
[15] T Sato and Y Kameya. Prism: a language for symbolic-statistical modeling. In I[JCAI,
1997.
[16] N Shervashidze, P Schweitzer, E J Van Leeuwen, K Mehlhorn, and K M Borgwardt.
Weisteiler-lehman graph kernels. The Journal of Machine Learning Research, 2011.
[17] J Vlasselaer, G Van den Broeck, A Kimmig, W Meert, and L De Raedt. Anytime
inference in probabilistic logic programs with tp-compilation. In Proceedings of the 24th
IJCAI, 2015.

[18] J Whaley, D Avots, M Carbin, and M S Lam. Using datalog with binary decision
diagrams for program analysis. In Programming Languages and Systems. Springet,
2005.

58

