Identifying Driver’s Cognitive Distraction Using Inductive Logic Programming

Fumio Mizoguchi† ‡, Hayato Ohwada†, Hiroyuki Nishiyama†,
Akira Yoshizawa *, Hirotoshi Iwasaki *

Faculty of Sci. and Tech., Tokyo University of Science†
WisdomTex Co. Ltd. ‡
Denso IT Laboratory*
Background

• Next Generation Services in Car
 • Telematics
 • Entune, G-BOOK
 • Services in Cooperation with Smartphone
 • Smartphone NaviCon
 • Common Internet Services

Toyota Entune

Denso NaviCon
Purpose of the Study

• New research topic to Traffic problem
• To detect distracted driving
 Inside car services causes distracted driving, cell phone, media players, navigation
Real time driving experiments

Cognitive Qualitative SIMulation on Eye Movement

- Using QSIM: Qualitative SIMulation
- Analyzing real data
 - Eye Movement
 - Driving Data

Real street experiments: Limits of subjects numbers
Driving Simulator to Collect Experimental Data
Experimental Setting

Participants:

19 drivers (female 9 male 10)

Age: 30 ～ 50s
Experience: 5 ～ over 20 years
Hours/week: 1 ～ 30 hours

Two 15 min. same route drives for each participants

1. First Driving (without mental load)
 - normal driving

2. Second Driving (with mental load)
 - mental arithmetic task (load driving) every 8 seconds
Data Collection

1. Eye movement using EMR-9
 Position of Eye move \((X,Y)\)

2. Driving data using vehicle sensors from Simulator
 - accelerator depression data \((0 \sim 100)\)
 - steering data \((-1 \sim +1)\)
 - braking signal \((0 \text{ or } 1)\)
 - velocity data \((\text{km})\)
 - front vehicle \((0 \text{ or } 1)\)

Obtain 60 data points per second
Data Transformation for ILP learning

Transform raw data at constant time intervals to qualitative data

(About 900 sec: (5 sec) 54,000 times)

From Eye movement data

On move direction and distance

1. the counts of saccade and fixation
2. total eye movement distance

From driving data

1. Data average and standard deviation
2. Add difference attribute values

Example of qualitative data

`bigHigh` `bigMiddle` `bigLow` `average` `smallLow` `smallMiddle` `smallHigh`

Add new information on before event (interval)
Background knowledge

<table>
<thead>
<tr>
<th>Types</th>
<th>Predicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative value</td>
<td>accele(+ID, #Val), brake(+ID, #Val), velocity(+ID, #Val), steering(+ID, #Val), gazeX(+ID, #Val), gazeY(+ID, #Val), front(+ID, #Val), sacCount(+ID, #Val), fixCount(+ID, #Val), eyeMove(+ID, #Val)</td>
</tr>
<tr>
<td>Qualitative state difference</td>
<td>accele diff(+ID,#Val), brake diff(+ID,#Val), velocity diff(+ID,#Val), steering diff(+ID,,#Val), gazeX diff(+ID,#Val), gazeY diff(+ID,#Val), front diff(+ID,#Time,#Val), sacCount_diff(+ID, #Val), fixCount_diff(+ID, #Val), moveCount_diff(+ID, #Val)</td>
</tr>
<tr>
<td>Information on before event</td>
<td>Before_event(+ID, -ID)</td>
</tr>
</tbody>
</table>

Mode declaration: + input type - output type # constant
Positive/Negative Examples

Positive examples: mental arithmetic task
(more half time of driving)

Negative examples: Normal driving
(only first driving data)

Data example: F01 (female, age 30, experiences 10 years, 5 hours/week)

<table>
<thead>
<tr>
<th>State</th>
<th>Time(sec.)</th>
<th>The number observation of raw data</th>
<th>The number of examples</th>
<th>Positive examples</th>
<th>Negative examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>917</td>
<td>55020</td>
<td>183</td>
<td>0</td>
<td>183</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>934</td>
<td>56220</td>
<td>186</td>
<td>119</td>
<td>0</td>
</tr>
</tbody>
</table>
Obtained ILP Rules

Rule generation by Parallel ILP engine
[Nishiyama & Owada 2015, Owada & Mizoguchi 1999]

- 2sets 6CPU computers
 (Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz 16.0GB 64bit)
- 6sets 4CPU computers
 (Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz 8.0GB 64bit)

Total time: 4615 sec. (1.28 hours)
Rule generations: 22sets
Examples of Rule (driving data F01)

Driving and Eye movement Rules

\[
\{23,4\} \text{ class}(A) : - \text{ steering}(A, \text{ straight}), \text{ eyeMove}(A, \text{ average}), \\
\text{ before_event}(A, B), \text{ front}(B, \text{ notClear}).
\]

\[
\{21,3\} \text{ class}(A) : - \text{ front}(A, \text{ notClear}), \text{ before_event}(A, B), \\
\text{ steering}(B, \text{ straight}), \text{ eyeMove}(A, \text{ average}).
\]

Each rule means **this driver follows a car in front, going straight and eye-movement is average**

Checked normal driving video

In normal driving: eye-movement is almost high moving

(No mental arithmetic task)

‘Average eye-movement’ means this driver don’t gather front information

Not fixation, not saccade
Conclusions

*Using Driving Simulator, we have obtained cognitive distraction with inductive rules.
*Parallel ILP engine is useful for the identification of distraction.
*The rules verify distraction in terms of eye-movement data, sac and fix.